Журналы →  Tsvetnye Metally →  2016 →  №3 →  Назад

RARE METALS
Название Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit)
DOI 10.17580/tsm.2016.03.08
Автор Zanaveskin K. L., Maslennikov A. N., Dmitriev G. S., Zanaveskin L. N.
Информация об авторе

A. V. Topchiev Institute of Petrochemical Synthesis (Russian Academy of Sciences), Moscow, Russia:

K. L. Zanaveskin, Senior Researcher, e-mail: zakon82@mail.ru
G. S. Dmitriev, Senior Researcher, e-mail: dmitriev.gs@mail.ru
L. N. Zanaveskin, Head of a Sector, e-mail: zanaveskin@ips.ac.ru

Scientific-Research Physical and Chemical Institute named after L. Ya. Karpov, Obninsk, Russia:

A. N. Maslennikov, Junior Researcher, e-mail: anmaslennikoff@gmail.com

Реферат

This article shows the results of experimental researches, aimed at the definition of the peculiarities of processing of quartz-leucoxene concentrate (Yaregskoe deposit) by autoclave leaching. Leaching was carried out using sodium hydroxide water solution in laboratory autoclave at the temperatures of 180–200 оС, and the ratio L:S = 3–4 ml/g. Slime fraction may be formed as a result of autoclave concentrate leaching. The basic reason of slime formation are the concurrent reactions of alkaline interconnection both with mineral impurities, and with ore component in concentrate. Besides the main reaction of quartz interconnection with alkali, the concurrent reactions may flow in leaching process, leading to formation of sodalite, magnetite, sodium titanate, titanic acid and molengrafite. Control of formation of titanium-containing impurities, changing the leaching process conditions, leads to the definition of sodalite content only by initial aluminium oxide concentration. Experiments showed that sodalite is the undesirable impurity, decreasing the fractional conversion of TiO2 into TiCl4. During the chlorination process, sodalite is transformed into alumosilicic spinel, inert to chlorine impact, and is cumulated in reaction area. By its cumulation, spinel covers the concentrate particles uniformly, complicating the reagent supply to the TiO2 surface. As a result, chlorination process is almost stopped, and TiO2 conversion is 88.7%. Processing of autoclave concentrate by 0.1 mole/l solution of HCl makes possible the sodalite removing. Experiments showed that obtained product is suitable for processing on TiCl4.

Investigation was carried out due to the grant of Russian Scientific Fund (project No. 15-13-00171).

Ключевые слова Leaching, chlorination, rutile, titanium tetrachloride, boiling layer, leucoxene, sodalite, autoclave concentrate, quartz-leucoxene concentrate
Библиографический список

1. Gupta C. K. Chemical Metallurgy: Principles and Practice. Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA, 2003. 811 p.

2. Adipuri A., Zhang G. Q., Ostrovski O. Chlorination of titanium oxycarbide produced by carbothermal reduction of rutile. Metallurgical and Materials Transactions B. 2008. Vol. 39, No. 1. pp. 23–34.

3. Gosudarstvennyy doklad o sostoyanii i ispolzovanii mineralno-syrevykh resursov Rossiyskoy Federatsii v 2013 godu (State report about the situation and use of mineral resources of Russian Federation in 2013). Moscow : Ministry of Natural Resources and Environment of Russian Federation, 2014. pp. 219–226. (in Russian)

4. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Osobennosti khimicheskogo i mineralnogo sostava chernovogo kvartsleykoksenovogo kontsentrata Yaregskogo mestorozhdeniya (Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition). Obogashchenie Rud = Mineral processing. 2015. No. 5. pp. 25–32. DOI: 10.17580/or.2015.05.05

5. Fedorova M. N. Khimicheskaya dovodka titanovogo kontsentrata putem avtoklavnogo vyshchelachivaniya kremnevoy kisloty (Chemical finishing of titanium concentrate by silicon acid autoclave leaching). Titan i ego splavy (Titanium and its alloys). Moscow : Publishing House of USSR Academy of Sciences, 1963. No. 9. pp. 36–41.

6. Zanaveskin K. L., Lukashev R. V., Makhin M. N. Zanaveskin L. N. Hydrothermal preparation of porous materials from a rutile-quartz concentrate. Ceramics International. 2014. Vol. 40, No. 10. Part B. pp. 16577–16580. DOI: 10.1016/j.ceramint.2014.08.013

7. Fertani-Gmati M., Jemal M. Thermochemistry and kinetics of silica dissolution in NaOH aqueous solution. Thermochimica Acta. 2011. Vol. 513, No. 1–2. pp. 43–48.

8. Shaowei Youa, Yifei Zhanga, Shaotao Caoa, Fangfang Chena, Yi Zhanga. Crystallization of monosodium aluminate hydrate from a concentrated aluminate solution containing silica. Hydrometallurgy. 2012. Vol. 115–116. pp. 104–107.

9. Bingan X., Smith P., Wingate C., De Silva L. The effect of calcium and temperature on the transformation of sodalite to cancrinite in Bayer digestion. Hydrometallurgy. 2010. Vol. 105, No. 1–2. pp. 75–81.

10. Layner A. I. Proizvodstvo glinozema (Alumina production). Moscow: State Scientific-Technical Publishing House of Ferrous and Non-Ferrous Metallurgy Literature, 1961. 620 p.

11. Yuanxu Liu, Zhonglei Wang, Wendong Wang, Weixin Huang. Engineering highly active TiO2 photocatalysts via the surface-phase junction strategy employing a titanate nanotube precursor. Journal of Catalysis. 2014. Vol. 310. pp. 16–23.

12. Pavasupree S., Suzuki S., Yoshikawa Y., Kawahata R. Synthesis of titanate, TiO2(B) and anatase TiO2 nanofibers from natural rutile sand. Journal of Solid State Chemistry. 2005. Vol. 178. pp. 3110–3116.

13. Mironov M. V., Pazukhin V. A. O povedenii dvuokisi titana v shchelochnykh i alyuminatnykh rastvorakh (About the behaviour of titanium dioxide in alcaline and aluminium solutions). Izvestiya vuzov. Tsvetnaya metallurgiya = Russian Journal of Non-Ferrous Metals. 1959. No. 1. pp. 83–90.

14. Kostov-Kytin V., Ferdov S., Kalvachev Yu., Mihailova B., Petrov O. Hydrothermal synthesis of microporous titanosilicates. Microporous and Mesoporous Materials. 2007. Vol. 105, No. 3. pp. 232–238.

15. Mironov M. V., Pazukhin V. A. O povedenii dvuokisi titana v shchelochnykh i alyuminatnykh rastvorakh v prisutstvii izvesti i kremnezema (About the behavior of titanium dioxide in alkaline and aluminate solutions with lime and silica). Izvestiya vuzov. Tsvetnaya metallurgiya = Russian Journal of Non-Ferrous Metals. 1959. No. 2. pp. 89–95.

16. Belov N. V. Struktury ionnykh kristallov i metallicheskikh faz (Structures of ionic crystals and metallic phases). Moscow : Publishing House of USSR Academy of Sciences, 1947. 240 p.

17. Reeves J. W., Reeves R. G. Misconceptions about titanium ore chlorination. “Heavy Minerals” Conference. Johannesburg : South African Institute of Mining and Metallurgy, 1997. pp. 203–206.

Language of full-text русский
Полный текст статьи Получить
Назад