Журналы →  Tsvetnye Metally →  2016 →  №3 →  Назад

METAL WORKING
Название Ultrasound influence of dendritic structure of АК7 alloy during its preparation to thixocasting
DOI 10.17580/tsm.2016.03.12
Автор Kosnikov G. A., Eldarkhanov A. S., Serbin V. V., Kalmykov A. V.
Информация об авторе

Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia:

G. A. Kosnikov, Professor

A. V. Kalmykov, Researcher

 

Grozny State Oil Technical University, Grozny, Russia:

A. S. Eldarkhanov, Chief Executive Officer, e-mail: chief@nomit.ru

 

LLC “Kriamid”, Moscow, Russia:

V. V. Serbin, Chief Executive Officer

Реферат

Transformation of dendritic structure of alloys into non-dendritic one provides the significant improvement of mechanical properties of the alloys at different casting methods. Ultrasonic treatment is one of the most efficient methods of external influence on dendritic structure of alloys, while aluminum alloys are the most widely used objects of study. At the same time, various ultrasonic equipment is used together with temperature ranges and duration of ultrasonic treatment, and methods of ultrasound introduction into the melt. The influence of ultrasound on alloy AK7 solid solution dendrites was investigated as a result of its cooling from liquid state and heating from solid to liquid-solid state, changing of temperature ranges and the influence duration. There was defined the ultrasonic treatment mode, making the highest influence on solid solution dendrite degeneracy during the cooling of the melt, reheated on liquidus to the solid-liquid state. There was carried out the assessment of influence of utlrasonic treatment on heat effects in the waveguide-melt-crucible system. There was also carried out the analysis of the nature of thermal curves and efficient ultrasonic treatment modes, conductive to thixostructure formation. There was made a research of influence of heating duration of initial charge to liquid-solid state on dendritic structure formation. The nature of dendritic structure evolution during sequential thermal-time and ultrasonic treatments was defined. There was made a conclusion about the highest ultrasound efficiency during the alloy treatment in liquid-solid state, preservation of hereditary features of degenerated dendritic structure of alloy (charge) during the reheating to liquid-solid state.

Ключевые слова Ultrasonic treatment, dendrites, degenerated dendrites, alloy AK7, thermal curves, liquid-solid state, thermal-time treatment, charge, heredity, reheating
Библиографический список

1. Semenov B. I., Binh Ngo Thanh, Semenov A. B. Tiksoformirovanie fasonnykh detaley iz alyuminievykh splavov (Thixoforming of shaped aluminium parts). Inzhenernyy zhurnal: nauka i innovatsii = Engineering Journal: Science and Innovation. 2013. Iss. 3. pp. 1–15.

2. Eskin G. I. Primenenie moshchnogo ultrazvuka v metallurgii legkikh splavov (Application of powerful ultrasound in light alloys metallurgy). Tsvetnye Metally = Non-ferrous metals. 2008. No. 9. pp. 68–79.

3. Abramov V. O., Abramov O. V., Artemev V. V., Kolomeets N. P., Prikhodko V. M., Eldarkhanov A. S. Moshchnyy ultrazvuk v metallurgii i mashinostroenii (Powerful ultrasound in metallurgy and mechanical engineering). Under the general editorship of O. V. Abramova, V. M. Prikhodko. Moscow : Yanus-K, 2006. 688 p.

4. Jia S., Nastac L. The Influence of Ultrasonic Stirring on the Solidification Microstructure and Mechanical Properties of A356 Alloy S. Chemical and Materials Engineering. 2013. Vol. 1 (3). pp. 69–73.

5. Semenov B. I., Kushtarov K. M. Proizvodstvo izdeliy iz metalla v tverdozhidkom sostoyanii (Manufacturing of metal products in solid-liquid state). Novye promyshlennye tekhnologii (New industrial technologies). Moscow : Bauman Moscow State Technical University, 2010. 223 p.

6. Kosnikov G. A., Baranov V. A., Petrovich S. Yu., Kalmykov A. V. Liteynye nanostrukturnye kompozitsionnye splavy (Casting nanostructured composite alloys). Liteynoe proizvodstvo = Foundry. Technologies and Equipment. 2012. No. 2. pp. 4–9.

7. Kosnikov G. A., Figovsky O. X., Eldarkhanov A. S., Mezhidov V. H., Yusupov S. S. Possibilities of use of high-power ultrasound for alloy treatment in the production of nanostructured alumomatrix composites. Scientific Israel — Technological Advantages. 2013. Vol. 15, No. 2. pp. 93–96.

8. Zhang L., Eskin D. G., Miroux A., Katgerman L. Formation of microstructure in Al – Si alloys under ultrasonic melt treatment. Light Metals. 2012. pp. 99–104.

9. Zhang L., Eskin D. G., Katgerman L. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys. Journal of Materials Science. 2011. Vol. 46. pp. 5252–5259.

10. Noé Alba-Baena, Eskin Dmitry. Kinetics of ultrasonic degassing of aluminum alloys. Light Metals. 2013. pp. 957–962.

11. Hari-Babu N., Fan Z., Eskin D. G. Application of external fields to technology of metalmatrix composite materials. TMS2013 Annual Meeting Supplemental Proceedings TMS (The Minerals, Metals & Materials Society). 2013. pp. 1037–1044.

12. Dobatkin V. I., Belov A. F., Eskin G. I., Borovikova S. I., Golder Yu. G. Novaya zakonomernost kristallizatsii metallicheskikh materialov. Otkrytiya. Izobreteniya (New regularity of crystallization of metallic materials. Discoveries. Inventions). 1983. No. 37. Scientific discovery. Diploma No. 271.

13. Dobatkin V. I., Eskin G. I., Borovikova S. I. K voprosu o formirovanii subdendritnoy struktury slitka pri ultrazvukovoy obrabotke rasplava v protsesse kristallizatsii (About the formation of subdendritic ignot structure during the ultrasonic treatment of melt in crystallization process). Tekhnologiya legkikh splavov = Technology of Light Alloys. 1971. No. 6. pp. 9–17.

14. Dobatkin V. I., Eskin G. I. Slitki s nedendritnoy strukturoy dlya deformatsii v tverdo-zhidkom sostoyanii (Non-dendritic alloys for deformation in solidliquid state). Tsvetnye Metally = Non-ferrous metals. 1996. No. 2. pp. 68–70.

15. Eskin G. I., Moiseeva M. V., Serebryanyy V. N. et al. Optimizatsiya protsessa tverdo-zhidkogo deformirovaniya zagotovok splava tipa Al9-1 s nedendritnoy strukturoy (Optimization of the process of solid-liquid deformation of non-dendritic Al9-1 type alloy billets). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2003. No. 4. pp. 3–7.

16. Dobatkin V. I., Eskin G. I., Borovikova S. I., Golder Yu. G. Zakonomernosti formirovaniya struktury slitkov alyuminievykh splavov pri nepreryvnom lite s ultrazvukovoy obrabotkoy kristallizuyushchegosya rasplava (Regularities of formation of the structure of aluminium alloy ignots during the continuous casting with ultrasonic treatment of crystallized melt). Obrabotka legkikh i zharoprochnykh splavov (Treatment of light and heat-resistant alloys). Moscow : Nauka, 1976. pp. 151–162.

17. Neduzhiy A. M. Issledovanie vliyaniya izotermicheskoy vyderzhki alyuminievogo splava AK7pch v zhidkotverdom sostoyanii na morfologicheskie izmeneniya pervichnoy tverdoy fazy (Investigation of the influence of isothermal holding of aluminium alloy AK7pch (АК7пч) in liquid-solid state on morphological changes of primary solid phase). Metallofizika i noveyshie tekhnologii = Metal Physics and Advanced Technologies. 2010. Vol. 32, No. 6. pp. 851–858.

18. Borisov G. P., Borisov A. G., Tsurkin V. N. et al. Transformatsiya iskhodnoy dendritnoy struktury splava AK7 pri elektrotokovom vozdeystvii v temperaturnom intervale tverdozhidkogo sostoyaniya (Transformation of initial dendritic structure of alloy AK7 during electric current influence in the temperature range of solid-liquid state). Protsessy litya = Casting Processes. 2012. No. 3 (93). pp. 32–41.

Language of full-text русский
Полный текст статьи Получить
Назад