Журналы →  Tsvetnye Metally →  2017 →  №1 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название Local plasma and electrochemical oxygenating on the example of AMg5 (АМг5) alloy
DOI 10.17580/tsm.2017.01.10
Автор Rudnev V. S., Nedozorov P. M., Yarovaya T. P., Mansurov Yu. N.
Информация об авторе

Institute of Chemistry (Far Eastern Branch of Russian Academy of Sciences), Vladivostok, Russia:
V. S. Rudnev, Head of Laboratory of Plasma-Electrolytic Processes, e-mail: rudnevvs@ich.dvo.ru
P. M. Nedozorov, Researcher of Laboratory of Plasma-Electrolytic Processes
T. P. Yarovaya, Researcher of Laboratory of Plasma- Electrolytic Processes

 

Far Eastern Federal University, Vladivostok, Russia:

Yu. N. Mansurov, Head of a Chair “Materials Science and Material Technologies”

Реферат

In certain cases there is a need in local application of oxide coatings by plasmaelectrolytic oxidation (PEO) on separate sites of surface without immersion of all product in bathtub with electrolyte. However regularities of such processes are not comprehensively studied. This paper shows the information on local application of coatings in the system “flat aluminum anode — sleeve cathode” from stainless steel. The data are obtained showing the influence of electrolyte consumption velocity via hollow cathode, interelectrode distance and time of processing for local coating spot diameter and thickness. Effect of local processing may be reached at certain velocities of electrolyte pumping and distance between electrodes. PEO-coating in the conditions of the electrolyte (freely falling via the cylindrical cathode nozzle) can be applied on a local site of a flat surface when the distance between electrodes is more than 1 mm, and electrolyte consumption velocity not less than 6 l/(min.cm2). These and other data may be taken as a basis when developing ways of drawing PEO-coatings on the necessary local sites of a surface of metal products. The laboratory installation was manteled allowing to investigate the experimentally processes of local drawing coatings on a surface of samples from aluminum-magnesium alloys by PEO.

Ключевые слова Plasma-electrolytic oxydation, aluminum, drawing coatings, hollow cathode, electrolyte pumping
Библиографический список

1. Vladimirov B. V., Krit B. L., Lyudin V. B., Morozova N. V., Rossiiskaya A. D., Suminov I. V., Epel’feld A. V. Microarc Discharge Oxidizing of Magnesium Alloys: A Review. Surface Engineering and Applied Electrochemistry. 2014. Vоl. 50, Nо. 3. pp. 195–232.
2. Wang X., Wu X., Wang R., Qiu Z. Effect of Na3AlF6 on the structure and mechanical properties of plasma electrolytic oxidation coatings on 6061 Al alloy. International Journal of Electrochemical Science. 2013. Vоl. 8, Nо. 4. pp. 4986–4995.
3. Rudnev V. S., Adigamova M. V., Lukiyanchuk I. V., Tkachenko I. A., Morozova V. P. Structure and magnetic characteristics of iron-modied titania layers on titanium. Journal of Alloys and Compounds. 2015. Vоl. 618. pp. 623–628.
4. Diamanti M. V., Ormellese M., Pedeferri M. P. Application-wise nanostructuring of anodic films on titanium: a review. Journal of Experimental Nanoscience. 2015. Vоl. 10, Nо. 17. pp. 1285–1308.
5. Dehnavi V., Luan B. L., Shoesmith D. W., Liu X. Y., Rohani S. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surface and Coatings Technology. 2013. Vоl. 226. pp. 100–107.
6. Korkmaz K. The effect of Micro-arc Oxidation treatment on the microstructure and properties of open cell Ti6Al4V alloy foams. Surface and Сoatings Technology. 2015. Vоl. 272. pp. 72–78.
7. Suminov I. V., Belkin P. N., Epelfeld A. V., Lyudin V. B., Krit B. L., Borisov A. M. Plasma-electrolytic modification of metal and alloy surface. Under the general editorship of I. V. Suminov. In 2 volumes. Vol. II. Moscow : Tekhnosfera, 2011. 512 p.
8. Rudnev V. S. Multi-phase anode alloys and prospects of their application. Zashchita metallov. 2008. Vol. 44, No. 3. pp. 283–292.
9. Snezhko L. A., Rudnev V. S. Anodic sparc oxidation of magnesium. Moscow : Publishing House “Tekhnika”, TUMA GROUP, 2014. 160 p.
10. Belevantsev V. I., Terleeva O. P., Markov G. A., Shulepko E. K., Slonova A. I., Utkin V. V. Micro-plasma electrochemical processes. Review. Protection of metals. 1998. Vol. 34, No. 5. pp. 469–484.
11. Parfenov E. V., Yerokhin A., Nevyantseva R. R., Gorbatkov M. V., Liang C. J., Matthews A. Towards smart electrolytic plasma technologies: аn overview of methodological approaches to process modelling. Surface and Coatings Technology. 2015. Vol. 269. pp. 2–22.
12. Malyshev V. N., Zorin K. M. Features of microarc oxidation coatings formation technology in slurry electrolytes. Applied Surface Science. 2007. Vоl. 254, No. 5. pp. 1511–1516.
13. Yerokhin A. L., Nie X., Leyland A., Matthews A., Dowey S. J. Plasma electrolysis for surface engineering. Surface and Coatings Technology. 1999. Vоl. 122. pp. 73–93.
14. Bakovets V. V., Polyakov O. V., Dolgovesova I. P. Plasma-electrolytic anode treatment of metals. Novosibirsk : Nauka, 1991. 168 p.
15. Gerasimova A. A., Radyuk A. G. The improvement of the surface quality of workpieces by coating. CIS Iron and Steel Review. 2014. No. 1. pp. 33–36.
16. Novikov A. N., Batishev A. N., Kuznetsov Yu. A., Kolomeychenko A. V. Reconstruction and reinforcement of aluminium alloy details by micro-arc oxidation. Orel : Orel State Agrarian University, 2001. 99 p.
17. Pogrebnyak A. D., Tyurin Yu. N. The structure and properties of Al2O3 and Al coatings deposited by microarc oxidation on graphite substrates. Zhurnal tekhnicheskoy fiziki. 2004. Vol. 74, No. 8. pp. 109–112.
18. Shatalov V. K., Shtokal A. O., Blatov A. A. Microarc Oxidation of Product Surfaces without Using a Bath. Nauka i obrazovanie. MGTU imeni N. E. Baumana. 2015. No. 3. pp. 1–14. DOI: 10.7463/0315.0760651
19. Rudnev V. S., Gordienko P. S., Kurnosova A. G., Orlova T. I. Method of micro-arc oxidation of valve metals and their alloys. Patent RF, No. 1783004. Published: 23.12.92. Bulletin No. 47.

Language of full-text русский
Полный текст статьи Получить
Назад