Журналы →  Obogashchenie Rud →  2017 →  №5 →  Назад

TECHNOLOGICAL MINERALOGY
Название The mathematical analysis methods application in estimation of the international practice of copper-zinc and pyritic-polymetallic ores selective flotation
DOI 10.17580/or.2017.05.04
Автор Aleksandrova T. N., Arustamyan K. М., Romanenko S. A.
Информация об авторе

St. Petersburg Mining University (St. Petersburg, Russia):

Aleksandrova T. N., Head of Chair, Doctor of Engineering Sciences, Professor
Arustamyan K. M., Postgraduate Student, K_Arustamyan@rivs.ru
Romanenko S. A., Postgraduate Student, sromanenko@yandex.ru

Реферат

The international practice of copper-zinc and pyritic-polymetallic ores selective flotation is analyzed in the paper. A statistical estimation of a formed data array including the concentrating plants processing parameters, as presented in the literature references, has been performed. A high variation of processing parameters, attributable to treatment of ores from deposits of different genesis, is noted. A conclusion is made with regard to a significant impact of reagent regime, as applied in the world practice. The advanced statistical methods are used for deeper understanding of the observed dispersion of parameters and establishment of quantitative interrelations between input variables and output functions. By means of factor analysis, two main components were detected with respect of determination of two major subtypes of deposits: massive pyritic ores and copperzinc ores with low or medium grade of iron sulfides. The method of harmonic analysis is used for checking the factor analysis results, verifying the presence of the two main types of genesis of the deposits in question. It is shown, that development of the pyritic factor significantly worsens the metallurgical results, despite the higher copper grade of the ore. In processing of ores with lower copper grade, a significant worsening of the metallurgical results was also noted. With the help of neural simulation, a differential diagnostics of the metallurgical results was performed with respect to the genesis of the deposits in question in the format of dressability curves.
The work was performed with the financial support from the Federal Targeted Programme «Research and development in the trends of priority growth areas of the science and technology sector of the Russian Federation for 2014–2020», Project RFMEFI57417X0168.

Ключевые слова Pyritic-polymetallic ores, copper-zinc ores, flotation, advanced statistical methods, neural simulation
Библиографический список

1. Lobanov K. V. Copper-pyrite mineralization of the south-western Altai. Author’s abstract of dissertation for the degree of Candidate of Geological and Mineralogical Sciences. V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences. Novosibirsk, 2012. 16 p.
2. Dergachev A. L. Evolution of volcanogenic pyrite formation in the history of the Earth. Author’s abstract of dissertation for the degree of Doctor of Geological and Mineralogical Sciences. Lomonosov Moscow State University. Moscow, 2010. 58 p.
3. Rahimzhanov P., Borcov V. Refractory pyritepolymetallic ores and the influence of key factors on the processes of hydrometallurgical flotation and enrichment. Vestnik Kazakhskogo Natsionalnogo Universiteta. Seriya Khimicheskaya (Chemical Bulletin of Kazakh National University). 2011. No. 4 (64). pp. 178–182.
4. Shumskaya E. N., Poperechnikova O. Yu., Tikhonov N. O. Development of technology of concentration of complex pyrite polymetallic ore of Korbalikhinskoe deposit. Gornyi Zhurnal. 2014. No. 11. pp. 78–83.
5. Arustamyan M. A., Soloveva L. M. Introduction of new technology of polymetallic ore concentration at Nikolaevsky concentration plant (Kazakhmys PLC). Gornyi Zhurnal. 2014. No. 11. pp. 70–74.
6. Chekalova K. A. Mineral composition and formation conditions of Snegirikhinskoye deposit ores. Izvestiya AN KazSSR. Seriya Geologicheskaya. 1978. No. 5. pp. 49–56.
7. http://www.studfiles.net/preview/1746151/ (accessed: 05.03.2017).
8. The state of technology for the non-ferrous metal ores processing at Canada's concentrators / under the general ed. of L. A. Davydova. Мoscow, 1982. 90 p. (Overview information of TsNII Ekonomiki i Informatsii Tsvetnoy Metallurgii, Ser. Obogashchenie rud tsvetnykh metallov, Iss. 1).
9. Gaudin A. M. Flotation. Moscow: Gosudarstvennoye nauchno-tekhnicheskoye izdatelstvo po gornomu delu, 1959. pp. 518–522.
10. Polkin S. I., Adamov E. A., Kovachev K. P., Semkov N. I. Technology of non-ferrous metal ores processing. Moscow: Nedra, 1976. pp. 260–262.
11. Shifrina E. D. Separation of copper, lead and zinc sulphides by flotation. Moscow, 1984. 15 p. (Overview information of TsNII Ekonomiki i Informatsii Tsvetnoy Metallurgii, Ser. Obogashchenie rud tsvetnykh metallov, Iss. 22).
12. Dudenkov S. V., Shubov L. Ya., Glazunov L. A. et al. The fundamentals of theory and practice of the flotation reagents use. Moscow: Nedra, 1969. p. 306.
13. Adorjan L. A. Mineral processing. Plant practice. Mining Annual Rev. 1979. June. pp. 249–251.
14. Shumskaya E. N., Sizykh A. S. Increasing of gold extraction from polymetallic ore of Novoshirokinskoe deposit. Gornyi Zhurnal. 2014. No. 11. pp. 44–48.
15. Shumskaya E. N., Solovyeva L. M., Poperechnikova O. Yu., Nagaeva S. P. Peculiarities of faded ores flotation. URL: http://rivs2010.rivs.ru/wp-content/uploads/2010/12/15shumskaya.pdf (accessed: 14.09.2017).
16. Mashevsky G. N., Kokorin A. M., Li Fen Low, Vo Go Dzin. Introduction of SKIF ionometry systems for optimizing the reagent regime at the Ksilinsk concentrator. Obogashchenie Rud. 1994. No. 6. pp. 7–11.
17. Bocharov V. A., Pospelov N. D., Tomova I. S. Beneficiation of copper-zinc ores abroad. Moscow, 1980. 48 p. (Overview information of TsNIItsvetmet Ekonomiki i Informatsii, Ser. Obogashchenie rud tsvetnykh metallov, Iss. 3).
18. Bocharov V. A., Ignatkina V. A. Technology of mineral processing. In 2 vol. Vol. 1. Mineral and raw materials base. Beneficiation of non-ferrous metals ores, and rare metals ores and placers. Moscow: «Ruda i Metally» Publishing house, 2007. p. 198.
19. Vikentyev I. V., Belenkaya Yu. A., Ageev B. I. Alexandrinskoye pyrite-polymetallic deposit (Ural, Russia). Geologiya Rudnykh Mestorozhdeniy. 2000. Vol. 42, No. 3. pp. 248–274.
20. Izoitko V. M. Technological mineralogy and estimation of ores. St. Petersburg: Nauka, 1997. p. 350.
21. Zimin A. V., Arustamyan M. A., Yagudin R. A., Kalinin Ye. P., Khamidullina F. G. Improvement of copperzinc processing technology at tne Uchalinsk Mining Complex concentrating plant. Obogashchenie Rud. 2003. No. 1. pp. 14–16.
22. Abdrakhmanov I. A., Zimin A. V., Belevich I. V., Kalinin Ye. P. Special features of the Uchalinsk Mining Complex concentrating plant modernization project. Obogashchenie Rud. 2003. No. 2. pp. 41–44.
23. Yagudin R. A., Karasov Yu. G., Pavlova V. I. Stages of the Uchalinsk concentrator development. Gornyi Zhurnal. 2004. No. 6. pp. 53–55.
24. Zimin A. V., Arustamyan M. A., Soloveva L. M., Kalinin E. P., Nemchinova L. A. Classification of the technological flotation concentration schemes of pyrite copper and copperzinc ores. Gornyi Zhurnal. 2012. No. 11. pp. 28–33.
25. Fyodorov S. A., Ilchenko V. O. Geological-andmineralogical characteristics of the Gaysk copper pyrite deposit. Obogashchenie Rud. 2000. No. 1. pp. 18–23.
26. Balatovic M. Handbook of flotation reagents: Chemistry, theory and practice. Flotation of sulfide ores. Elsevier, 2007. 445 p.
27. http://www.studfiles.ru/preview/6454645/ (accessed: 05.03.2017).
28. Flotation studies on a complex Cu-Pb-Zn sulfide ore / Daxiong Chen, Tong Chen, Bo Hu et al. XXVI Intern. Mineral Processing Congress. New Delhi, 2012. Bk 1. Paper № 81.
29. Hanumantha Rao K., Chernyshova I. V. Challenges in sulphide mineral processing. The Open Mineral Processing Journal. 2011. Vol. 4. P. 7–13.

Language of full-text русский
Полный текст статьи Получить
Назад