Журналы →  Chernye Metally →  2018 →  №2 →  Назад

Metallurgy and metallography
Название Study of thermoelectrical properties of Fe–C–Si–Mn alloys
Автор A. M. Belenkiy, K. R. Udalaya, S. I. Chibizova
Информация об авторе

National University of Science and Technology “MISiS” (Moscow, Russia):

A. M. Belenkiy, Dr. Eng., Prof., Chair of power-efficient and resource-saving industrial technologies, e-mail: energomet@misis.ru
S. I. Chibizova, Cand. Eng., Associate Prof., Chair of power-efficient and resource-saving industrial technologies

 

Abinsk Electrometallurgical Worls (Abinsk, Russia):
K. R. Udalaya, quality management engineer

Реферат

Method of thermoelectric power is one of the most common methods of non-destructive control. The principle of this method consists in causing the thermoelectric power in a circuit consisting of the sample and two electrodes which support a constant temperature gradient in the circuit. The thermoelectric power depends on the chemical composition of the sample. Study of the possibilities of this method has shown its applicability to the analysis of carbon and silicon in steel, cast iron and some ferro-alloys. At the same time most of the thermopower measurements were carried out by the static method to determine a single impurity in a small range of temperature diff erence — up to 300 ° C. In this paper the authors propose an approach to determine three elements at a time — C, Si and Mn in steels in a wide temperature range (from 20 to 1450 °C) based on dynamic signal measurement of the thermoelectric power of a liquid cooling sample taken from the bath of steelmaking unit or a solid sample heated to 500 °C.

Ключевые слова Thermoelectric power, Fe–C–Si–Mn alloys, operational structure control, electrodes, ferro-alloys, temperature gradient.
Библиографический список

1. Blatt F. J., Schroeder P. A., Foils K. L., Greyg D. Thermoelectric power of metals. Мoscow. 1980. 248 p.
2. Lavaire N., Massardier V., Merlin J. Qualitative evaluation of the interstitial content (C and/or N) in solid solution in extra-mild steels by thermoelectric power measurements. Scripta Materialia. 2004. Vol. 50. pp. 131–135.
3. Perez M., Sidoroff C., Vincent A., Esnouf C. Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: from thermoelectric power measurements to the prediction of dimensional changes. Acta Materilia. 2009. Vol. 57. pp. 3170–3181.
4. Lavaire N., Merlin J., Sardoy V. Study of ageing in strained ultra and extra low carbon steels by thermoelectric power measurement. Scripta Materialia. 2001. Vol. 44. Issue 4. pp. 553–559.
5. Tkalcec I., Azoitia C., Crevoiserat S., Mari D. Tempering effects on a martensitic high carbon steel. Materials Science and Engineering. 2004. A 387–389. pp. 352–356.
6. Tomohiko I., Youtsuji J., Nakamune A. Development of pig iron and molten slag level measurement technique for blast furnace. ISIJ International. 2014. Vol. 54. pp. 2618–2622.
7. Denel A. K. Methods of non-destructive metal separation by grades. Moscow. 1969. 48 p.
8. Sterkhova I. V., Kamaeva L. V. The influence of Si concentration on undercooling of liquid Fe. Journal of non-crystalline solids. 2014. https://doi.org/10.1016/j.jnoncrysol.2014.01.027.
9. Merlin J., Merle P., Garnier S., Bouzekri M. Experimental determination of the carbon solubility limit in ferritic steels. Metallurgical and material transactions. 2004. Vol. 35 A. pp. 1655–1661.

Language of full-text русский
Полный текст статьи Получить
Назад