Журналы →  Chernye Metally →  2018 →  №11 →  Назад

Metal science and metallography
Название Control and management of chemical homogeneity of the ingots at electroslag remelting
Автор L. Ya. Levkov, D. A. Shurygin, V. S. Dub, V. V. Klochay
Информация об авторе

RF State Research Centre JSC SPA “CNIITMASH” (Moscow, Russia):

L. Ya. Levkov, Dr. Eng., e-mail: LYLevkov@cniitmash.ru
D. A. Shurygin, Cand. Eng., e-mail: Shurygind5@mail.ru
V. S. Dub, Dr. Eng., Prof., Scientific Chief, Institute of Metallurgy and Machine-Building

 

“Ruspolimet” PJSC (Kulebaki, Russia):
V. V. Klochay, Cand. Eng., General Director

Реферат

The new method for management the content of elements that have a high thermodynamic affinity for oxygen in metal at electroslag remelting has been developed on the basis of ideas of a slag melt as a phase with variable stoichiometric composition, which depend on the chemical potential of oxygen. The model of oxygen behavior has been proposed in electroslag remelting taking into account a combination of thermodynamic factors (the chemical composition of the electrode metal, the composition and the amount of deoxidant inputs, the slag composition, its oxidation and temperature) and the kinetic characteristics (the reaction surface of metal-slag interaction, mass transfer rate in metal and slag), which allows prediction of oxygen, aluminum, silicon and titanium concentrations in the electroslag remelting ingot metal. The opportunity of refine managing and controlling the physical and chemical parameters of the metal during consistent melting of the ingot is shown. The results of the industrial implementation of slag deoxidation method at production of ingots from low-alloy, high-chromium and titanium-doped steels are presented. Original data are obtained at the implementation of complex technologies of electroslag remelting for the manufacturing of gas turbine disks, solid-block valves and in-vessel internals of Х-tree and shut-off valve.

Ключевые слова Electroslag remelting, slag oxidation, equilibrium partial oxygen pressure, oxidation-reduction reactions, EMF method, duplex steel, solid-block valve and in-vessel internals
Библиографический список

1. Volokhonsky L. A. Electrometallurgy in the USSR and Russia (Review of events: 1953–2003). Elektrometallurgiya. 2003. No. 6. pp. 2–9.
2. Mercurelli G., Zanni M, Svanera M., Biebriecher U., Franz H. Manufacture of size-large forged ingots via electric slag remelting. Chernye Metally. 2016. No. 5. pp. 23–30.
3. Loh J., Weyl A., Snatkin H. Economical production of small ESR ingots. Chernye Metally. 2013. No. 3. pp. 40–44.
4. Reitz J., Maurischat M., Friedrich B. Optimized control of slag chemistry for the electroslag remelting of large size in gots. Proc. 17th International Forgemasters Meetings. 2008. pp. 28–36.
5. Mitchell A., Carmona F. R., Wei Chi-ho. Deoxidation in the Electroslag. Process. 39th Electric Furnace Conferense. Houston. TX. Dec. 8–11.1981. AIME. pp. 103–107.
6. Bartosinski М., Reitz J., Friedrich В. Modelling the Oxygen Content of Titanium during Deoxidation in the Pressure Electroslag Remelting (PESR). Process. Proc. of EMC. 2013. pp. 1–7.
7. Kharicha A., Ludwig A., Wu M. et al. Integrated simulation of advanced protective gas electroslag remelting for the production of high-quality steels (ISA-PESR). Final report, Contract No RFSRCT-2004-00027 1. 2009. 150 p.
8. Khrapko S. A. About electronic contribution in thermodynamic function of solutions. Collection of proceedings DonNTU-2012. Series Metallurgiya. Issue. 1(14)-2(15). 2012. pp. 3–13.
9. Grigoryan V. A., Stomakhin A. Ya., Utochkin Yu. I. et. al. Physical and chemical calculations of electric steel-making processes: Collection of exercises with solutions. Moscow: MISiS, 2007. 318 p.
10. Levkov L., Vasiliev Ya., Shirshikov A. Oxidation-reduction modeling of electroslag remelting. Proc. of the Int. Conf. on Mathematical Modeling and Simulation of Metal Technologies-MMT. Israel. 2000. pp. 590–603.
11. Odenthal H.-Yu., Uebber N., Schlueter J., Lepke M., Morik K., Blom H. Innovative predicting model of a basic oxygen converter with data management. Chernye Metally. 2015. No. 2. pp. 50–55.
12. Levkov L. Ya., Dub V. S., Shurygin D. A. New opportunities of controlling and management of the chemical uniformity in the electroslag remelting. Proc. of Liquid Metal Processing & Casting Conference (LMPC). 2017. pp. 129–135.
13. Levkov L. Ya. Theoretical preconditions and practical methods for management of physical and chemical, thermophysical processes during electroslag remelting which determine the quality of critical parts: Dissertation … of Doctor of Engineering Sciences. Moscow, 2016. 339 p.
14. Okamura M., Hirose K., Maeda M. The Manufacturing and the Internal Qualities of Gigantik High Alloy Electroslag Remelted Ingots. Proc. of the 6th Int. Iron and Steel Congress. 1990. Nagoya. pp. 715–722.
15. Yan B., Zhang J. The thermodynamics of Some Transition metals in molten slags. Steel Research International. 2010. Vol. 81, No. 9. pp. 742–748.
16. Okamura M., Hirose K., Maeda M. The Manufacturing of Gigantik High Alloy Ingot by ESR. 11th International Forgemasters Meeting, 11/14 June 1991, Terni /Spolto, Italy. ref. III. 2.17.
17. Utkina K. N., Balikoev A. G., Levkov L. Ya. et al. Technology in principle for production of novel nonostructured corrosion-resistant duplex steel. Proceedings of 19th conference of young specialists in the field of nuclear power systems. Podolsk. 2017. pp. 351–359.
18. SAF 2507 — TM Sandvik AB. Swagelok Company. March 2008, R1 MS-06-18-E.
19. Sundsrom A., Kangas P. Duplex stainless steel alloy for use in seawater applications. Patent EA, No. 009108. Applied: 19.02.2004; Published: 26.10.2007. Bulletin No.5.
20. Zubchenko A. S., Koloskov М. М., Kashirskaya Yu. V. et. al. Handbook of steels and alloys. 2nd revised edition. Edited by Zubchenko A. S. Moscow: Mashinostroenie, 2003. 784 p.

Language of full-text русский
Полный текст статьи Получить
Назад