Journals →  Горный журнал →  2020 →  #1 →  Back

ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ
ArticleName Оценка геомеханического состояния массива горных пород на Талнахском и Октябрьском месторождениях
DOI 10.17580/gzh.2020.01.16
ArticleAuthor Ерёменко А. А., Дарбинян Т. П., Айнбиндер И. И., Конурин А. И.
ArticleAuthorData

Институт горного дела им. Н. А. Чинакала СО РАН, Новосибирск, Россия:

Ерёменко А. А., зам. директора по научной работе, проф., д-р техн. наук, eremenko@ngs.ru

Конурин А. И., научный сотрудник, канд. техн. наук

 

Заполярный филиал (ЗФ) ПАО «ГМК «Норильский никель», Норильск, Россия:
Дарбинян Т. П., директор Департамента горного производства

 

Институт проблем комплексного освоения недр им. академика Н. В. Мельникова РАН, Москва, Россия:
Айнбиндер И. И., зав. отделом, проф., д-р техн. наук

Abstract

Выполнен анализ результатов исследований по определению природного поля напряжений на Талнахском и Октябрьском месторождениях медно-никелевых руд. Методом измерительного гидроразрыва экспериментально определены параметры поля напряжений, действующих в районе ствола ВС-7 рудника «Таймырский». Измерены деформации массива при частичной разгрузке центральной скважиной по принципу прямоугольной тензометрической розетки. Установлено, что параметры поля напряжений в районе ствола ВС-7 на горизонтах –1400 и –1500 м приближаются к равнокомпонентному (гидростатическому) распределению действующих напряжений в породном массиве. При дальнейшем проведении исследований исходного поля напряжений рекомендовано использовать в качестве тестового метод гидроразрыва, а для получения статистически представительных данных на участках месторождения – метод частичной разгрузки.

keywords Напряженно-деформированное состояние, природное поле напряжений, технология, лабораторный эксперимент, метод гидроразрыва, метод разгрузки
References

1. Nagovitsyn Yu. N., Darbinyan T. P., Fender S. N. Stress-strain analysis of ore in terms of S-2 ore body in the Komsomolsky Mine. Development Problems in the Mining Science and Mining Industry : Russian Conference Proceedings. Novosibirsk, 2016.
2. Petukhov I. M., Egorov P. V., Skitovich V. P., Lotsenyuk B. G. Stress-strain analysis results in intact rock mass of the Talnakh and Oktyabrsky deposits. Stress measurement in rock mass : Collected papers. Novosibirsk : IGD SO RAN SSSR, 1976. Vol. II. pp. 6–9.
3. Instructions on safe conducting mountain works on the Talnakhsky and October deposits inclined and dangerous on rock bumps. Norilsk, 2015.
4. Smirnov V. A., Zvezdkin V. A., Shabarov A. N., Samorodov B. N., Marysyuk V. P. Prediction and stability of underground excavations in mines of Norilsk Nickel. Gornyi Zhurnal. 2004. No. 12. pp. 44–48.
5. Reiter K., Heidbach O. 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin. Solid Earth Discussions. 2014. Vol. 6. pp. 2423–2494.
6. Gunzburger Y., Magnenet V. Stress inversion and basement-cover stress transmission across weak layers in the Paris basin, France. Tectonophysics. 2014. Vol. 617. pp. 44–57.
7. Balg C., Roduner A. Geobrugg AG: Ground support applications. International Ground Support Conference. Lungern, 2013.
8. Xibing Li, Fan Feng, Diyuan Li, Kun Du, Ranjith P. G., Rostami J. Failure Characteristics of Granite Influenced by Sample Height-to-Width Ratios and Intermediate Principal Stress Under True-Triaxial Unloading Conditions. Rock Mechanics and Rock Engineering. 2018. Vol. 51, Iss. 5. pp. 1321–1345.
9. Aynbinder I. I., Kuzyaev L. S. , Katkov N. N. Assessment of stress research in separation pillars in deep mines in the Norilsk Region. Bezopasnost truda v promyshlennosti. 2002. No. 4. pp. 22–26.
10. Panov A. V., Skulkin A. A., Tsibizov L. V., Rodin R. I. In situ stress evaluation by solving inverse problem based on hydrofracturing stress measurements. GIAB. 2016. No. 6. pp. 381–388.
11. Peng Liu, Yang Ju, Pathegama G. Ranjith, Zemin Zheng, Jialiang Chen. Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks. Journal of Natural Gas Science and Engineering. 2016. Vol. 35. pp. 541–554.
12. Leontev A. V. Features of hydraulic fracturing for stress measurement and control in mines. Interexpo Geo-Sibir. 2015. Vol. 2, No. 3. pp. 127–132.
13. Leontev A. V., Rubtsova E. V., Lekontsev Yu. M., Kachalsky V. G. Measuring-computing complex «Gidrorazryv». Journal of Mining Science. 2010. Vol. 46, Iss 1. pp. 89–94.
14. Aksenov V. K., Kurle nya M. V., Petrov A. I. Releef of a rock mass by a slot as a means of determining the absolute stresses in rocks. Soviet Mining. 1972. Vol. 8, Iss. 2. pp. 226–228.
15. Baryshnikov V. D., Boltengagen I. L., Kovrizhnykh A. M. Stress measurement by borehole slotting. Geodynamics and Stress State of the Earth’s Interior : International Conference Proceedings. Novosibirsk, 2004. pp. 142–150.
16. Eremenko V. A., Neguritsa D. L. Efficient and active monitoring of stresses and strains in rock masses. Eurasian Mining. 2016. No. 1. pp. 21–24. DOI: 10.17580/em.2016.01.02
17. Blake K. Stress analysis for boreholes on department of defense lands in the Western United States: a study in stress heterogeneity. Proceedings, Thirty-Eighth Workshop an Geothermal Reservoir Engineering. Stanford : Stanford University, 2013 pp. 139–150.
18. Shkuratnik V. L., Nikolenko P. V. Methods of definition of stress-strain state of rock massif. Moscow : Izdatelstvo MGGU, 2012. 111 p.
19. Makarov A. B. Practical rock mechanics. Manual of mining engineers. Moscow : Gornaya kniga, 2006. 391 p.
20. Makarov A. B., Ogorodnikov S. V., Kalmurzaev K. A. Definition of natural stress state of the massif of Maleevskoe deposit. Gornyi Zhurnal. 2013. No. 5. pp. 57–61.
21. Vlokh N. P., Zubkov A. V., Feklistov Yu. G. Improvement of the borehole slotting technique. Stress diagnostics in rock masses : Collected papers. Novosibirsk, 1980. pp. 30–35.

Language of full-text russian
Full content Buy
Back