Journals →  Gornyi Zhurnal →  2020 →  #2 →  Back

ArticleName Geomechanical model of underground mine. Part II. Application
DOI 10.17580/gzh.2020.02.04
ArticleAuthor Biryuchev I. V., Makarov A. B., Usov A. A.

SRK Consulting, Moscow, Russia:

I. V. Biryuchev, Senior Consultant for Geomechanics,
A. B. Makarov, Chief Consultant for Geomechanics, Professor, Doctor of Engineering Sciences


Russdragmet, Moscow, Russia:

A. A. Usov, Leading Mining Engineering


Earlier on, the authors described the geology and structure framing stages of a block geomechanical model of a mine. The instruments and technologies required for the collection and processing of source data on rock mass structure were presented. The model was applied to zoning of the Novo-Shirokino Mine field with respect the rock mass stability categories for support design purposes. In order to fill the geomechanical model with the data on the mechanical properties of the jointed rock mass, the full-scale study of the rock properties were accomplished. The studies are required for the mine zoning with respect to rockburst hazard, determination of the stability criterion and allowable parameters of stopes, and for the numerical modeling of geomechanical processes to validate an efficient mining technology. Based on the analysis of the new lab test data on the properties of rocks in NSHM, recent rockburst hazard criteria and rock fracture prediction by the rock mass quality, the rockburst hazard zoning of the NSHM field was performed by the rock mass quality index Q. The factual data analysis produced a stability criterion, and the permissible parameters of stopes were determined thereupon. The expedience of the transition from sublevel stoping to sublevel caving is shown. The conclusion is proved by the numerical modeling outcome and by the data on actual movements in rock mass.
This is the end of the article. The beginning is Gornyi Zhurnal, 2020, No. 1, pp. 42–48.

keywords Novo-Shirokino Mine, geomechanical model, proneness to rock bursts, zoning, stopes, stability, geomechanical processes, modeling, caving, dilution, mining system

1. Biryuchev I. V., Makarov A. B., Usov A. A. Geomechanical model of underground mine. Part I. Creation. Gornyi Zhurnal. 2020. No. 1. pp. 42–48. DOI: 10.17580/gzh.2020.01.08
2. Lemeshko B. Yu., Lemeshko S. B., Postovalov S. N., Chimitova E. V. Statistical data analysis, simulationand study of probability regularities. Computer approach. Series: NSTU monographs. Novosibirsk : Izdatelstvo NGTU, 2011. 888 p.
3. Grubbs F. E., Beck G. Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations. Technometrics. 1972. Vol. 14, No. 4. pp. 847–854.
4. Terzaghi K. Theoretical soil mechanics. New York : John Wiley and Sons, 1943. 509 p.
5. Rebetskiy Yu. L., Sim L. A., Marinin A. V. From slickensides to tectonic stresses. Methods and algorithms. Moscow : GEOS, 2017. 233 p.
6. Aydin A. ISRM Suggested method for determination of the Schmidt hammer rebound hardness: Revised version. International Journal of Rock Mechanics and Mining Sciences. 2009. Vol. 46, Iss. 3. pp. 627–634.
7. Ramli Nazir, Ehsan Momeni, Danial Jahed Armaghani, Mohd For Mohd Amin. Prediction of Unconfined Compressive Strength of Limestone Rock Samples Using L-Type Schmidt Hammer. The Electronic Journal of Geotechnical Engineering. 2013. Vol. 18, Bund. I. pp. 1767–1775.
8. Buyuksagis I. S., Goktan R. M. The effect of Schmidt hammer type on uniaxial compressive strength pre diction of rock. International Journal of Rock Mechanics and Mining Sciences. 2007. Vol. 44, Iss. 2. pp. 299–307.
9. Shabarov A. N., Morozov K. V. (Eds.). Innovation trends in mine planning and design : collection of scientific papers. Saint-Petersburg : Izdatelstvo Sankt-Peterburgskogo gornogo universiteta, 2017. 336 p.
10. Hoek E., Brown E. T. The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11, Iss. 3. pp. 445–463.
11. Fisenko G. L. Limiting states of rocks around underground openings. Moscow : Nedra, 1976. 272 p.
12. Kiyoo Mogi. Experimental Rock Mechanics. Geomechanics Research Series 3. London : Taylor & Francis Group, 2007. 361 p.
13. Baklashov I. V. Deformation and Fracture of Rock Masses. Moscow : Nedra, 1988. 270 p.
14. Petukhov I. M., Linkov A. M. Mechanic of rock bumps and discharges. Moscow : Nedra, 1983. 279 p.
15. Available at: (accessed: 17.12.2019).
16. Petukhov I. M., Linkov A. M., Sidorov V. S., Feldman I. A. Theory of protection strata. Moscow : Nedra, 1976. 223 p.
17. Petukhov I. M., Batugina I. M., Sidorov V. S., Shabarov A. N., Lodus E. V. et al. Prediction and Prevention of Rock Busts in Mines. Moscow : Izdatelstvo Akademii Gornykh Nauk, 1997. 377 p.
18. Fadeev A. B. (Ed.). Durability and deformability of rocks. Moscow : Nedra, 1979. 269 p.
19. Cai M., Kaiser P. K. Rockburst Support : Reference Book. Sudbury : Laurentian University, 2018. Vol. 1. Rockburst Phenomenon and Support Characteristics. 284 p.
20. Hoek E. Practical Rock Engineering. Available at: (accessed: 26.11.2019).
21. Lianyang Zhang. Engineering Properties of Rocks. 2nd ed. Amsterdam : Elsevier, 2017. 394 p.
22. Stacey T. R. Rock engineering design – the importance of process, prediction of behaviour, choice of design criteria, review and consideration of risk. Proceedings of the International Seminar on Design Methods in Underground Mining. Perth : Australian Centre for Geomechanics, 2015. pp. 57–76.
23. Rasskazov I. Yu. Research of rock bump hazard on underground mines of the Far East and Transbaikalia. Problemy nedropolzovaniya. 2018. No. 3. pp. 128–139.
24. Potvin Y., Hudyma M., Miller H. D. S. Design guidelines for open stope support. CIM Bulletin. 1989. Vol. 82, No. 926. pp. 53–62.
25. Stewart S. B. V., Forsyth W. W. The Mathew’s method for open stope design. CIM Bulletin. 1995. Vol. 88, No. 992. pp. 45–53.
26. Trueman R., Mikula P., Mawdesley C., Harries N. Experience in Australia with the application of the Mathews’ method for open stope design. CIM Bulletin. 2000. Vol. 93, No. 1036. pp. 162–167.
27. Makarov A. B. Validation of permissible parameters for rooms and pillars. Fundamentalnye i prikladnye voprosy gornykh nauk. 2015. Vol. 2, No. 2. pp. 261–267.
28. Makarov A. B., Rasskazov I. Yu., Saksin B. G., Livinsky I. S., Potapchuk M. I. Geomechanical evaluation of roof-and-pillar parameters in transition to underground mining. Journal of Mining Science. 2016. Vol. 52, Iss. 3. pp. 438–447.
29. Sosnovskaya E. L., Avdeev A. N. Control over the geotechnical processes at the goldfields of Eastern Siberia. Izvestiya vuzov. Gornyi zhurnal. 2019. No. 5. pp. 21–29.
30. Sosnovskiy L. I. Justification of geomechanical behavior control methods in underground gold mining from the determined regular patterns in the formation of tectonic structures : thesis of inauguration of Dissertation … of Doctor of Engineering Sciences. Irkutsk, 2007. 40 p.
31. Hoek E., Carter T. G., Diederichs M. S. Quantification of the Geological Strength Index Chart. 47th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco, 2013.
32. Barton N., Løset F., Lien R., Lunde J. Application of the Q-system in design decisions. Subsurface Space: Environmental Protection, Low Cost Storage, Energy Savings : proceedings of the International Symposium. New York : Pergamon, 1980. pp. 553–561.

Language of full-text russian
Full content Buy