Журналы →  Обогащение руд →  2020 →  №4 →  Назад

МЕТОДЫ АНАЛИЗА
Название Калибровка коэффициентов восстановления при ударе в DEM-моделировании сыпучих материалов
DOI 10.17580/or.2020.04.07
Автор Васильева Н. В., Ерохина О. O.
Информация об авторе

Санкт-Петербургский горный университет, г. Санкт-Петербург, РФ:

Васильева Н. В., доцент, канд. техн. наук, Vasileva_NV@pers.spmi.ru

Ерохина О. O., студент, o.o.erokhina@gmail.com

Реферат

Коэффициенты восстановления частица–частица и частица–стенка (CoRPP и CoRPB соответственно) являются наиболее сложными для определения относительно иных параметров DEM-моделирования сыпучих материалов. Использование их табличных значений для рассматриваемых материалов существенно влияет на результаты моделирования. В статье предлагаются обзор имеющихся методик и авторские решения для измерения коэффициента восстановления шихт. В ходе исследования были разработаны методика и стенд для определения CoRPB, позволяющие с достаточной точностью получать воспроизводимые результаты. Что касается CoRPP, результаты исследования позволяют сделать вывод о том, что определение этого DEM-параметра требует более тщательного подхода, в отличие от CoRPB. Предложенные методы могут быть использованы для создания универсального стенда, позволяющего определять целый ряд параметров DEM.

Ключевые слова Метод дискретных элементов, калибровка, сыпучие материалы, коэффициент восстановления, руда, горная промышленность, моделирование
Библиографический список

1. Mei C., Peng X., Zhou P., Zhou J., Zhou N. Simulation and optimization of furnaces and kilns for nonferrous metallurgical engineering. Berlin, Heidelberg: Springer-Verlag, 2010. 450 p.
2. Data A., Mishra B. K., Rajamani R. K. Analysis of power draw in ball mills by the discrete element method // Canadian Metallurgical Quarterly. 1999. Vol. 38, Iss. 2. P. 133–140.
3. Сизяков В. М., Власов A. A., Бажин В. Ю. Стратегические задачи металлургического комплекса России // Цветные металлы. 2016. № 1. С. 32–38. DOI: 10.17580/tsm.2016.01.05.
4. Господариков А. П., Выходцев Я. Н., Зацепин М. А. Математическое моделирование воздействия сейсмовзрывных волн на горный массив, включающий выработку // Записки Горного института. 2017. Т. 226. С. 405–411.
5. Boikov A. V., Savelev R. V., Payor V. A., Erokhina O. O. The control method concept of bulk material behaviour in the pelletizing drum for improving the results of DEM-modeling // CIS Iron and Steel Review. 2019. No. 1. P. 10–13. DOI: 10.17580/cisisr.2019.01.02.
6. Baum W. Ore characterization, process mineralogy and lab automation a roadmap for future mining // Minerals Engineering. 2014. Vol. 60. P. 69–73.
7. Kalala J. T., Breetzke M., Moys M. H. Study of the influence of liner wear on the load behaviour of an industrial dry tumbling mill using the Discrete Element Method (DEM) // International Journal of Mineral Processing. 2008. Vol. 86, Iss. 1–4. P. 33–39.
8. Арсентьев В. А., Блехман И. И., Блехман Л. И., Вайсберг Л. А., Иванов К. С., Кривцов А. М. Методы динамики частиц и дискретных элементов как инструмент исследования и оптимизации процессов переработки природных и техногенных материалов // Обогащение руд. 2010. № 1. С. 30–35.
9. Demidov I. V., Vaisberg L. A., Blekhman I. I. Vibrational dynamics of paramagnetic particles and processes of separation of granular materials // International Journal of Engineering Science. 2019. Vol. 141. P. 141–156.
10. Феоктистов А. Ю., Каменецкий А. А., Блехман Л. И., Васильков В. Б., Скрябин И. Н., Иванов К. С. Применение метода дискретных элементов для моделирования процессов в горно-металлургической промышленности // Записки Горного института. 2011. Т. 192. С. 145–149.
11. Vasilyeva N., Koteleva N., Ivanov P. Quality analysis of technological process control // International Journal for Quality Research. 2018. Vol. 12, No. 1. P. 111–128.
12. Coetzee C. J. Calibration of the discrete element method and the effect of particle shape // Powder Technology. 2016. Vol. 297. P. 50–70.
13. Wu C. Y. DEM simulations of die filling during pharmaceutical tableting // Particuology. 2008. Vol. 6, Iss. 6. P. 412–418.
14. Torsten G., Katterfeld A. On the numerical calibration of discrete element models for the simulation of bulk solids // Computer Aided Chemical Engineering. 2006. Vol. 21. P. 533–538.

15. Yan Z., Wilkinson S. K., Stitt E. H., Marigo M. Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis // Computational Particle Mechanics. 2015. Vol. 2. P. 283–299.
16. Do H. Q., AragÓn A. M., Schott D. L. A calibration framework for discrete element model parameters using genetic algorithms // Advanced Powder Technology. 2018. Vol. 29, Iss. 6. P. 1393–1403.
17. Rackl M., Hanley K. J. A methodical calibration procedure for discrete element models // Powder Technology. 2017. Vol. 307. P. 73–83.
18. Ye F., Wheeler C., Chen B., Hu J., Chen K., Chen W. Calibration and verification of DEM parameters for dynamic particle flow conditions using a backpropagation neural network // Advanced Powder Technology. 2019. Vol. 30, Iss. 2. P. 292–301.
19. Zhao S., Zhou X., Liu W. Discrete element simulations of direct shear tests with particle angularity effect // Granular Matter. 2015. Vol. 17, Iss. 6. P. 793–806.
20. Al-Hashemi H. M. B., Al-Amoudi O. S. B. A review on the angle of repose of granular materials // Powder Technology. 2018. Vol. 330. P. 397–417.
21. Frankowski P., Morgeneyer M. Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements // AIP Conference Proceedings. 2013. Vol. 1542. P. 851–854.
22. Zhou H., Hu Z., Chen J., Lv X., Xie N. Calibration of DEM models for irregular particles based on experimental design method and bulk experiments // Powder Technology. 2018. Vol. 332. P. 210–223.
23. Ghodki B. M., Patel M., Namdeo R., Carpenter G. Calibration of discrete element model parameters: soybeans // Computational Particle Mechanics. 2019. Vol. 6, Iss. 1. P. 3–10.
24. Wang L., Zhou W., Ding Zh., Li X., Zhang Ch. Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in threedimensions // Powder Technology. 2015. Vol. 284. P. 187–194.
25. Krull F., Hesse R., Breuninger P., Antonyuk S. Impact behaviour of microparticles with microstructured surfaces: Experimental study and DEM simulation // Chemical Engineering Research and Design. 2018. Vol. 135. P. 175–184.
26. Wang L., Wu B., Wu Z., Li R., Feng X. Experimental determination of the coefficient of restitution of particleparticle collision for frozen maize grains // Powder Technology. 2018. Vol. 338. P. 263–273.
27. Imre B., Räbsamen S., Springman S. M. A coefficient of restitution of rock materials // Computers & Geosciences. 2008. Vol. 34, Iss. 4. P. 339–350.
28. Hlosta J., Žurovec D., Rozbroj J., RamÍrez-GÓmez Á., Nečas J., Zegzulka J. Experimental determination of particle–particle restitution coefficient via double pendulum method // Chemical Engineering Research and Design. 2018. Vol. 135. P. 222–233.

Language of full-text русский
Полный текст статьи Получить
Назад