ArticleName |
Selection of laser processing parameters for hot stamping tools based on mathematical planning of the experiment |
ArticleAuthorData |
National University of Science and Technology “MISiS” , Moscow, Russia:
N. A. Chichenev, Dr. Eng., Prof., Dept. of Engineering of Technological Equipment, e-mail: chich38@mail.ru O. N. Chicheneva, Cand. Eng., Associate Prof., e-mail: ch-grafika@mail.ru A. O. Karfidov, Head of Dept. of Engineering of Technological Equipment, e-mail: a.korf@mail.ru A. N. Pashkov, Cand. Eng., Associate Prof., Dept. of Engineering of Technological Equipment, Deputy Head of the RPC for Scientific work of “NPP "Istok" named after A. I. Shokin, e-mail: a.n.pashkov@yandex.ru |
Abstract |
The results of experimental studies to determine the influence of the technological parameters of laser processing of 3Kh3M3F die steel on the service life of the working tool of a hot-stamping machine designed for hot stamping of rolling bearing rings are presented. Development of a mathematical model of the tool's resistance to laser radiation parameters was carried out by the method of mathematical planning of the experiment using a full factorial experiment. Durability of the die tool N (in thousand forgings) was chosen as an optimization criterion, while dimensionless (generalized) parameters of the speed V* and power P* of laser processing, as well as the overlap coefficient of laser tracks S* were proposed to use as factors. The obtained mathematical model of the resistance of laser-hardened die tools for hot deformation is used for the development and optimization of laser quenching modes without melting the surface of the ejectors in order to increase their thermal fatigue strength. Due to the fact that dimensionless factors containing the thermophysical characteristics of the die tool material are used in the planning of the experiment, the developed mathematical model can be used to assess the operational resistance of other heat-resistant tool steels of the martensite class. |
References |
1. Konstantinov I. L. Technology of forging and hot volumetric stamping. A manual. Moscow: NITs INFRA-M. 2019. 104 p. 2. Semenov E. I. Forging and hot stamping. A manual. Moscow. MGIU. 2011. 414 p. 3. Stenico A., Tami W. Experience of improvement of direct quenching technology at the plant in the USA. Chernye metally. 2018. No. 12. pp. 41–43. 4. Vasilyev D. I., Tylkin M. A., Teterin G. P. Designing grounds for deformation tools. Moscow: Vysshaya shkola. 1980. 223 p. 5. Gorbatyuk S. M., Pashkov A. N., Morozova I. G., Chicheneva O. N. Technologies for applying Ni-Au coatings to heat sinks of SiC-Al metal matrix composite material. Materials Today: Proceedings. 2021. Vol. 38. pp. 1889–1893. DOI: 10.1016/j.matpr.2020.08.581. 6. Smirnov A. E. Managing phase composition of complex alloyed heat-resistant steels during vacuum cementation and quenching. Metallovedenie i termicheskaya obrabotka metallov. 2020. Vol. 783. No. 9. pp. 45–52. 7. Maharjan N., Zhou W., Zhou Y., Wu, N. Underwater laser hardening of bearing steels. Journal of Manufacturing Processes. 2019. Vol. 47. pp. 52–61. DOI: 10.1016/j.jmapro.2019.08.020.
8. Khorram A., Davoodi Jamaloei A., Jafari A., Moradi M. Nd:YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation. Optics and Laser Technology. 2019. Vol. 119. Article No 105617. DOI: 10.1016/j.optlastec.2019.105617. 9. Bahrami Balajaddeh M., Naffakh Moosavy H. Pulsed Nd:YAG laser welding of 17-4 PH stainless steel: Microstructure, mechanical properties, and weldability investigation. Optics and Laser Technology. 2019. Vol. 119. Article No 105651. DOI: 10.1016/j.optlastec.2019.105651. 10. Gornyi S. G., Grechko Yu. B., Patrov M. I., Yudin K. V., Yurevich V. I. Laser marking of materials. Fotonika. 2007. No. 3. pp. 16–22. 11. Makarichev Yu. A., Ivannikov Yu. N. Methods of experiment planning and data processing. A manual. Samara: Samarskiy gosudarstvennyi tekhnicheskiy universitet. 2016. 131 p. 12. Chichenev N. A., Gorbatyuk S. M., Naumova M. G.; Morozova I. G. Using the similarity theory to describe laser hardening processes. CIS Iron and Steel Review. 2020. Vol. 19. pp. 44–47. 13. Grigoryants A. G., Shiganov I. N., Misyurov A. I. Technological processes of paser treatment. A manual. Moscow: Izdatelstvo MGTU im. N. E. Baumana. 2006. 663 p. 14. Laser technologies of materials processing: up-to-date problems of fundamental researches and applied developments. Edited by Panchenko V. Ya. Moscow: FIZMATLIT. 2009. 664 p. 15. Pinakhin I. A., Chernigovskiy V. A. Grounds of volumetric laser hardening of tool and structural materials. A monograph. Stavropol. Izdatelstvo SKFU. 2014. 160 p. 16. Nefedov A. V., Svichkar V. V., Chicheneva O. N. Re-engineering of Equipment to Feed the Melting Furnace with Aluminum Charge. Lecture Notes in Mechanical Engineering. 2021. pp. 1198–1204. DOI: 10.1007/978-3-030-54817-9_139. 17. Aborkin A. V., Vaganov V. E., Shlegel A. N., Bukarev I. M. Effect of laser hardening on die steel micro hardness and surface quality. Metallurgist. 2015. Vol. 59. No. 7–8. pp. 619–625. 18. Nefedov A. V., Novikova Yu. V., Chicheneva O. N. Manipulator for feeding a box with liquid solution for repair of cast iron buckets at blast furnace shop of JSC “Ural Steel”. Chernye Metally. 2021. No. 8. pp. 4–9. DOI: 10.17580/chm.2021.08.01. |