Journals →  Цветные металлы →  2023 →  #10 →  Back

Редкие металлы, полупроводники
ArticleName Влияние СВЧ-обработки на фазовый состав цирконата европия при растворном методе синтеза
DOI 10.17580/tsm.2023.10.06
ArticleAuthor Гречишников Н. В., Никишина Е. Е., Ильичева А. А., Подзорова Л. И.
ArticleAuthorData

РТУ МИРЭА, Институт тонких химических технологий им. М. В. Ломоносова, Москва, Россия

Н. В. Гречишников, аспирант кафедры химии и технологии редких элементов, эл. почта: nklgrchshnkv@yandex.ru
Е. Е. Никишина, доцент кафедры химии и технологии редких элементов, канд. хим. наук, эл. почта: nikishina@mirea.ru

 

Институт металлургии и материаловедения им. А. А. Байкова РАН, Москва, Россия
А. А. Ильичева, старший научный сотрудник лаборатории физикохимии баротермических процессов, эл. почта: ailyicheva@imet.ac.ru
Л. И. Подзорова, ведущий научный сотрудник лаборатории физикохимии баротермических процессов, канд. хим. наук, эл. почта: lpodzorova@imet.ac.ru

Abstract

Цирконаты редких элементов (ЦРЭ) имеют особое значение при создании термобарьерных покрытий для атомных, авиа- и аэрокосмических агрегатов и силовых установок. Разработка новых и совершенствование существующих технологий получения ЦРЭ является актуальной задачей. В представленной работе рассмотрен растворный метод получения цирконата европия из маловодного гидроксида (МВГ) циркония и ацетата европия с применением обработки волнами сверхвысокой частоты (СВЧ) на стадии сушки. Исследовано влияние состояния МВГ циркония (в виде порошка и геля) и СВЧ-сушки на фазовый состав конечного продукта. С помощью рентгенофазового анализа установлено, что при сушке на воздухе использование МВГ в виде геля практически не приводит к увеличению содержания целевой фазы пирохлора по сравнению с использованием порошка МВГ циркония. СВЧ-обработка не вызывает значительного повышения доли фазы пирохлора в конечном продукте при применении порошка МВГ циркония, в то время как при использовании геля МВГ циркония ее содержание возрастает до 26 %. Однако ИК-спектроскопия не показала различий между промежуточными продуктами до отжига, полученными из порошка и геля МВГ циркония, а также высушенными на воздухе и с помощью СВЧ-обработки. На основании имеющихся результатов сделан вывод, что использование геля МВГ циркония с последующей СВЧ-обработкой реакционной смеси позволяет сократить временные и энергетические затраты на сушку промежуточного продукта, а также повысить содержание целевой фазы пирохлора в конечном продукте.

keywords Цирконаты, редкоземельные элементы, цирконат европия, СВЧ, фаза пирохлора, осаждение маловодного гидроксида, сложные оксиды
References

1. Chen H. F., Zhang C., Liu Y. C., Song P. et al. Recent progress in thermal/environmental barrier coatings and their corrosion resistance. Rare Metals. 2020. Vol. 39, No. 5. pp. 498–512.
2. Wu S., Zhao Y., Li W., Liu W. et al. Research progresses on ceramic materials of thermal barrier coatings on gas turbine. Coatings. 2021. Vol. 11, No. 1. 79.
3. Zhang J., Guo X., Jung Y. G., Li L., Knapp J. Lanthanum zirconate based thermal barrier coatings: A review. Surface and Coatings Technology. 2017. Vol. 323. pp. 18–29.
4. Subramanian M. A., Aravamudan G., Subba Rao G. V. Oxide pyrochlores – A review. Progress in Solid State Chemistry. 1983. Vol. 15, Iss. 2. pp. 55–143.
5. Fuentes A. F., Montemayor S. M., Maczka M., Lang M. et al. A critical review of existing criteria for the prediction of pyrochlore formation and stability. Inorganic Chemistry. 2018. Vol. 57. pp. 12093–12105.
6. Liu Q., Huang S., He A. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. Journal of Materials Science and Technology. 2019. Vol. 35, No. 12. pp. 2814–2823.
7. Li Y., Kowalski P. M., Beridze G., Birnie A. R. et al. Defect formation energies in A2B2O7 pyrochlores. Scripta Materialia. 2015. Vol. 107. pp. 18–21.
8. Wang S., Li W., Wang S., Chen Z. Synthesis of nanostructured La2Zr2O7 by a non-alkoxide sol-gel method: From gel to crystalline powders. Journal of the European Ceramic Society. 2015. Vol. 35, Iss. 1. pp. 105–112.
9. Gao L., Zhu H., Wang L., Ou G. Hydrothermal synthesis and photoluminescence properties of Gd2Zr2O7:Tb3+ phosphors. Materials Letters. 2011. Vol. 65, Iss. 9. pp. 1360–1362.
10. Srinivasulu K., Manisha Vidyavathy S. Effect of different calcination techniques on the morphology and powder flowability characteristics of rare-earth zirconates (Re2Zr2O7; Re = La, Gd, Nd, Y) synthesized by solid-state highenergy milling process. Journal of Ceramic Processing Research. 2019. Vol. 20, No. 1. pp. 8–17.
11. Brykala U., Tomaszewski H., Diduszko R., Weglarz H. et al. A new material in the nuclear technology: gadolinium zirconate pyrochlore prepared by reactive sintering. Journal of Radioanalytical and Nuclear Chemistry. 2014. Vol. 299. pp. 637–641.
12. Lu X., Chen M., Dong F., Wang X., Wu Y. et al. Leaching stability of simulated waste forms for immobilizing An3+ by Gd2Zr2O7 with Nd3+. Journal of Wuhan University of Technology, Materials Science Edition. 2014. Vol. 29, No. 5. pp. 885–890.
13. Liu C., Zou B., Rondinone A. J., Zhang Z. J. Sol-gel synthesis of freestan ding ferroelectric lead zirconate titanate nanoparticles. Journal of the American Chemical Society. 2001. Vol. 123, Iss. 18. pp. 4344, 4345.
14. Kong L., Karatchevtseva I., Gregg D. J., Blackford M. G. et al. A novel chemical route to prepare La2Zr2O7 pyrochlore. Journal of the American Ceramic Society. 2013. Vol. 96, No. 3. pp. 935–941.
15. Kong L., Karatchevtseva I., Gregg D. J., Blackford M. G. et al. A novel chemical route to prepare La2Zr2O7 pyrochlore. Journal of the American Ceramic Society. 2013. Vol. 96, Iss. 3. pp. 935–941.
16. Zhukov A. V., Chizhevskaya S. V., Pjo P., Panov V. A. Heterophase synthesis of zirconium hydroxide from zirconium oxychloride. Neorganicheskie materialy. 2019. Vol. 55, No. 10. pp. 1051–1058.
17. Colomer M. T. Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides. Journal of Sol-Gel Science and Technology. 2013. Vol. 67, No. 1. pp. 135–144.
18. Imran M., Singh V. V., Garg P., Mazumder A. et al. In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH)4@W-ACF functional material for the development of next generation NBC protective gears. Scientific Reports. 2021. Vol. 11, No. 1. pp. 1–21.
19. Kalinkin A. M., Vinogradov V. Yu., Kalinkina E. V. Solid-phase synthesis of nanocrystalline gadolinium zirconate using mechanical activation. Neorganicheskie materialy. 2021. Vol. 57, No. 2. pp. 189–196.
20. Aghazadeh M., Barmi A. A. M., Hosseinifard M. Nanoparticulates Zr(OH)4 and ZrO2 prepared by low-temperature cathodic electrodeposition. Materials Letters. 2012. Vol. 73. pp. 28–31.

Language of full-text russian
Full content Buy
Back