
Introduction

N
owadays metallurgical limestone, used as a fluxing

agent in iron manufacturing, kilning process moni�

toring is based on traditional PID control regulation

systems. Such monitoring systems can be valid in limited

conditions only, as any introduced by the system insignificant

alternation implicates all the regulation characteristics recon�

figuration.

In consequence of unregulated alternations multiplicity,

metallurgical limestone kilning process is specified by, an

importance of adaptive to varied technological conditions new

monitoring system development has become evident. The

development procedure supposes two research stages: a shaft

kiln model development (identification) and control algorithm

design in accordance with the obtained model [1]. It should

be noted that control quality will significantly depend on the

shaft kiln model achieved at the identification stage.

The following work is aimed at metallurgical limestone

kilning process neural network model elaboration. Neural

network methods use will allow to update the model parame�

ters according to variable conditions and thus to improve

technological process monitoring quality.

The matter of study characteristics 
and neural network modeling task statement

The process of metallurgical limestone kilning takes

place in shaft kilns directly. Shaft kilns are the ones of con�

tinuous�motion. They correspond to a high freeboard

equipped with special devices for the materials charging and

outloading; cooling fans as well as outgoing gas exhaust blo�

wers and fuel burner. When active, a shaft kiln is fully charged

with lump material going down by gravity, being successively

heated, and torrefied and cooled. After the finished stock

outloading through a discharging device in a shaft bottom,

the rest material column falls down and a new portion of raw

material is added to a blank space on top. Counterflow prin�

ciple is kept inside a shaft, therefore in zones of heating and

torrefying raw material moves towards combustion�product

gas, whereas towards air current in a cooling area.

Heated up whilst raw material cooling air current rea�

ches burning zone of kiln and takes part either in a fuel com�

bustion process or intermingles the fire gases in case a fuel is

burnt in special combusters outside a kiln. While carrying�gut

of the described process analysis [2] input and output para�

meters of the developed model have been estimated; 16 input

and 8 output ones all in all. 

The following parameters have been chosen as the input

data: ore level inside  the kiln (L), gas rate in the bottom zone

(Fbz), gas rate in the top zone (Ftz), gas rate for cooling (Fg),

gas temperature (Tg), the bottom zone gaseous pressure

(Pgbz), the top zone gaseous pressure (Pgtz), an induced air

temperature (Ta), the bottom zone induced air temperature

(Tabz), the bottom zone air�flow rate (Fabz), the top zone air�

flow rate (Fatz), air�flow rate for cooling (Fac), recirculated

air temperature (Tra), the top zone recirculated air�flow rate

(Fratz), the bottom zone recirculated air�flow rate (Frabz),

recirculated air�flow rate for cooling (Frac). As the output

data the parameters listed below have been chosen: tempera�

ture in the heating zone (Thz), temperature in the bottom

burning zone of kiln (Tbbz), temperature in the top burning

zone (Ttbz), temperature in the cooling section (Tcs), flue ga�

ses temperature (Tfg), CaO+MgO content (%СaO+MgO),

MgO content (%MgO), CO2 content (%CO2).

Metallurgical limestone kilning process modeling

scheme  is represented on figure. The main task of the neural

network modeling is estimation of output parameters with

provision for current data�in.

Theoretical framework of the process 
neural network modeling development

There is a sequence of four procedures [3] which is

involved in the process neural network modeling develop�

ment. This sequence is as follows: data reduction, choice of

network structure, parameter optimization and model verifi�

cation. 

The objective behind the data reduction procedure has

been to obtain the most relevant information and to organize

data in the way providing good results at the neural network

modeling development.

The following steps can be distinguished in the data

reduction procedure. First comes scaling, followed by data

cleaning and further deletion of the superfluous data and sig�

9

C I S  I r o n  a n d  S t e e l  R e v i e w  ·  2 0 0 9

Metallurgical limestone shaft

kilning neural network model

development

N. I. Koteleva, I. N. Beloglazov, 

I. S. Lebedeva, A. I. Mikheyev

Saint Petersburg State Mining Institute 

(Technical University)

Neural network

model

Entity

Error

Thz
Tbbz
Ttbz
Tcs
Tfg
%CaO+MgO

%MgO

%CO2

L

Fbz
Ftz
Fg
Tg
Pgtz
Pgbz
Ta
Tabz
Fabz
Fatz
Fac
Tra
Frabz
Fratz
Frac

Metallurgical limestone kilning process modeling scheme



nal emission. Unfortunately no precise rules of some method

application are derived for the process under consideration.

That’s why it is worth testing the efficiency of the method

application at this stage. It must be admitted that the neural

network development must be preceded by this efficiency

estimation. To take an example, Lipshchits’ constant has

been chosen as a criterion in one paper [4] and the coefficient

of the stationary state as well as data consistency has been

offered as a criterion in the other one [5].

As a result, the set has been obtained assuming the pro�

cedure of the data reduction. It represents the process consid�

ered in its full working range and gives the optimum criteria

of data reduction efficiency.

ZN = {[u(t), y(t)], t = 1, N} (1)

u(t), y(t) — system inputs and outputs respectively, N — the

number of discrete samples.

The stage of the network structure choice provides the

following problems solution. They are the choice of the both

input vector (a regressor) of the neural network modeling and

the internal structure of the neural network. The first problem

turns out to be solved easily enough. The problem of the

regressor choice can be approached from the priori know�

ledge of the system and it depends on the tasks completed at

the simulation process. The contrary is the case of the inter�

nal structure determination that appears to be much more

complex and ambiguous.

The capacity of restriction of the maximum quantity of

latent layers containing neurons results from Kolmogorov’s

theory [6]. If the continuous function transforming N�di�

mensional set of the input data x in the M�dimensional out�

put vector d is considered to be a limit it is possible to prove,

that approximation of such type is certain to be made using

the network with one latent layer. If N is the number of the

input neurons, the latent layer having (2N 1) neurons will be

enough for this function realization. 

The stage of network parameter optimization concerns

the network weight coefficient setting as a result of the testing

procedure based on a number of examples. Testing appears to

be representation of the set of experimental data to the set of

neural network modeling parameters. The back propagation

of error is known to be one of the most popular techniques.

The traditional main question behind the model verifi�

cation procedure has been “To what extent is the optimized

model valid?» At present the most useful techniques of the

given stage carrying out are the following: model estimation

from the perspective of misfit (research of correlation func�

tions of various combinations of misfits and data) as well as

simulating modeling (k steps forward preceding) and an esti�

mation of an average generalization error. 

So far there are no precise rules of technique application

at each of those stages. Therefore the process neural network

modeling development can be approached by various method

combinations followed by making a choice of the most effec�

tive ones.

The neural network modeling of the metallurgical 
limestone roasting in shaft kilns

The data of the shaft kiln operation monitoring have

been regarded as initial ones. Training and testing samples

have been chosen with reference to these data.

The data reduction procedure results in the set of data

(Lipshchits’ constant is 136, stationary state coefficient is 0,81):
ZN = {[u(t), y(t)], t = 1,1648},

u(t) = [L, Fbz, Ftz, Fg, Tg, Pgbz, Pgtz, Ta, Tabz,

Fabz, Fatz, Fac, Tra, Fratz, Frabz, Frac]
T

y(t) = [Thz, Tbbz, Ttbz, Tcs, %CaО+MgO, 

%MgO, %CO2]T

The neural network having three latent layers has been

chosen to solve the problem required. There are twelve neu�

rons in the first latent layer, while six neurons in the second one

and eight neurons in the third layer. (Kolmogorov’s theory [8]

has been taken into consideration while making this topology

choice). The hyperbolic tangent has been used as the activation

function in the internal layers. Besides, the linear functions of

activation have been used as the activation function in the

input and output layers. The algorithm of back propagation of

error has been chosen for neural network testing.

The verification of the neural network development has

been carried out by correlation functions research. The ratio of

the correlation coefficients of the neural network in the training

samples and testing ones is given in the table as an example.

The analysis of correlation coefficients has revealed the

validity of the neural network testing (the least correlation

coefficient value in the training sample is 0.9, while it is 0.69

in the testing sample).

Conclusion

It is concluded that the model developed within this

research is capable enough of describing the process of met�

allurgical limestone kilning. The neural network using has

allowed obtaining of the model that is simple but capable to

function in changing process conditions. 

Having extra training capacities and abilities of getting

quick results this neural network modeling may be used at the

development of the neural network system of metallurgical

limestone kilning monitoring. 
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The results of neural network activity

Count of network yields 1 2 3 4 5 6 7 8

Correlation coefficients in the training samples 0.91 0.94 0.96 0.97 0.95 0.90 0.95 0.93

Correlation coefficients in the testing samples 0.71 0.74 0.70 0.94 0.69 0.76 0.84 0.87
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New structural scheme of ferrous metallurgy

I
n the past century, the ferrous metallurgy developed

towards constructing large volume aggregates. Outdated

and small blast�furnaces were replaced by large volume

blast�furnaces. The traditional pig�iron making technology

remains the fundamental technique for various grades steel

smelting and metal products manufacture. At the present

time about 70 % of the world steel production is based on pri�

mary metal production, obtained by traditional technology.

At least 95 % of the world pig�iron is obtained in blast�fur�

naces. That fact proves that blast�furnaces play a crucial role

in ferrous metallurgy. 

Under these conditions it is necessary to overestimate

the use perspectiveness of large volume blast�furnaces.

The USSR was the world leader in large�volume blast�

furnace manufacture. In the latter half of the past century

blast furnaces with the working volume of 1386, 1513,

1719, 2002, 2300, 2700, 3200, 5014, 5580 m3 were manu�

factured. These aggregates increased the productivity and

therefore proved the economic benefit of the blast�furnace

working�volume increase. The in�depth analysis was car�

ried out piecewise so that the existing political system and

the industrial development course (at that time) would not

be doubted. 

Meanwhile, there are some disamenities of blast�fur�

nace volume increase. These are:

1. Large�volume blast furnaces operate only when high

quality burden material is used, therefore when operating

large�volume blast furnaces the burden material preparation

costs increase. 

2. Considering the blast�furnace height limitations, the

volume increase was generally performed by aggregate lateral

dimensions increase. Under these conditions the basic blast�

furnaces processes development was hindered along the fur�

nace cross�section which eventually led to cast iron composi�

tion when tapped from different tap holes. 

3. The lateral dimension increase led to oxidation zone

decrease relative to furnace hearth radius. That led to coke

packing performance difficulties. In 1980’s engineers once

again started to use the term “dead man”. 

4. Some difficulties occurred with facility management

on integrated iron�and�steel works. Accidental and emer�

gency shut�downs of large�volume blast furnaces could easily

shut down the utilities and pig iron consumers since large�

volume blast furnaces excluded the possibility of a maneuver

available when using a small�volume blast furnaces. Along

with that, large burden masses that were processed by blast�

furnaces caused railway service functioning difficulties.

5. The environmental restrictions led to the end of large�

volume blast�furnaces domination era. 

It is widely known, that the major drawback of metallur�

gical branch (in terms of environmental impact) is its high

concentration ratio. Comparing to other industrial branches,

metallurgical branch is defined by high concentration per

area unit of a metallurgical region. Based on environmental

conditions and population health status, it is advisable to uti�

lize 5 blast furnaces with the working�volume of 1000 m3

spaced far apart than one 5000 m3 furnace. 

6. The world raw material market formation changes the

views on metallurgical branch. For Third World Countries

along with separate regions of large countries it is not neces�

sary to produce large quantities of primary metal therefore it

is not necessary to construct large volume aggregates.

7. In most cases, small volume blast furnaces have better

working data (by energy resources consumption) and are

more maneuverable in terms of manufactured products

range. Finally the recycling process of technogenic and sani�

tary waste takes place primarily in small volume metallurgical

aggregates. 


