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Several statistical restrictions, which are critically important for correct use of different Big Data procedures in metal-

lurgy for attestation and management of quality of metal products are evaluated. Representative production control 

data stores for steel manufacturing technologies are used as the research object. This research covered wide grade 

and dimension range of steels: large forgings of heat treatable 38KhN3MFA-Sh steel, rolled products of 40KhMFA 

steel, sheet 17G1S-U, 09G2S and 15KhSND steels. Possible scale of variety of values distribution both for manag-

ing parameters and characteristics of strength, plasticity and toughness is shown using the coefficients of asymmetry 

and kurtosis. These characteristics are varied within the technological tolerance range. Accompanying risk during 

metal quality prediction and management, e.g. using the methods of parametric statistics, was evaluated for the case 

when this circumstance was not taken into account. The features of influence of a sample list volume on the results of 

statistical processing of large production control data stores and metallurgical product are revealed. It is shown how 

absence of common space of parameters restricts possibilities of classic statistics in metallurgy, makes non-effective 

the management “by disturbance” principle. In this connection, possibilities of non-parametric statistics, presented 

by Kolmogorov – Smirnov criterion, which is not depended on distribution of collection of analyzed sample lists, are 

evaluated. To provide objective selection of the areas with dominating type of relationship, it is necessary to take into 

account possibility of existence of different evolution scenarios for structure and defects along the technological chain 

(technological heredity) within the framework of rather wide tolerance range, as well as features of their appearance. 

Difference in the evolution mechanisms of structures and defects within the framework of separate technological tra-

jectory is a cause of appearances of developed heterogeneity for nominal single-type structures which have, however, 

different scales, as well as accompanying quality dispersion (which is often essential). Taking this circumstance into 

account allows to find out the links in the system “managing parameters – final parameters of metal products”, which 

are not always evident during their search using generally accepted approaches. Development of the complex of rules 

for online management of metal products quality is possible on this base.
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Introduction

Rise of requirements to steel quality led to complication 

of technological processes for its production, including steel-

making, liquid metal casting, refining remelting, hot metal 

forming (rolling, forging) and heat treatment. Such techno-

logical stages as coke-chemical, sintering and blast furnace 

iron making are presented within integrated iron and steel 

works. A complex of testing facilities for objective evalua-

tion of metal quality is also an inalienable part of the efforts 

aimed on manufacture of high-quality metal products. The 

list of quality parameters can be rather wide, it is determined 

by application area of metal products. Usually metallurgical 

production is rather well equipped by measuring devices and 

data collection systems along the whole technological line; 

however, owing to recent digitalization, possibilities for reg-

istration of information about technological process became 

essentially better. It allows not only to obtain complete obser-

vation about its realization, but also to create the conditions 

for precise tuning of the technology, i.e. online tuning. In this 

connection, the interest to statistical processing of large data 

stores of technological process and manufactured products is 

quite expectable. These data are accumulated rather quickly, 

taking into account serial (mass) features of manufacturing 

similar types of metal products [1-3]. But the examples of 

efficiency of such approaches are usually restricted within the 

frameworks of separate technological stages. The difficulties 

connected with their distribution for the whole technologi-

cal cycle are characterized, in particular, with the fact that 

statistical nature of metallurgical objects (such as managing 

and acquisition parameters) is not always taken into account, 

even in the case of use op up-to-date Big Data algorithms.  
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In this connection, the aim of this work is formulated as 

evaluation of statistical nature of metallurgical objects and 

possibilities if its influence on application efficiency of statis-

tical procedures during processing of big data stores, in order 

to prepare objective recommendations for metal products 

quality management, 

Objects for investigation

Data bases for production control of the processes for 

manufacture of wide range of metal products (such as large 

forgings made of 38KhNMFA-Sh heat treatable steel, sec-

tion rolled products of 40KhMFA heat treatable steel, sheet 

steels 17G1S-U, 09G2S, 15KhSND) were used as the ob-

jects for investigation within the framework of the technolo-

gies which were operated during different periods [1].

Data bases for production control presented the matrix 

Аm�n, where the lines m corresponded to quantity of melts 

and batches, the columns n corresponded to the values of 

technological parameters (nt) and quality characteristics 

of metal products (nq). For the investigated data bases, de-

scribing the technological processes of manufacture of metal 

products made of 38KhNMFA-Sh, 40KhMFA, 17G1S-U, 

09G2S, 15KhSND steels, quantity of the lines m in the ma-

trixes made (with reference to chemical composition) 342, 

166, 530 and 1460 as well as 1088 and 516 (melting in basic 

oxygen converter and electric arc furnace respectively), what 

presented the volume of similar products manufactured dur-

ing 1-2 years. Quantity of line in the matrix, with reference 

to properties of metal products, can be larger, also taking 

into account possibility of testing of several samples at dif-

ferent temperatures. Quantity of columns n in the matrixes  

(nt/nq) made 91/20, 18/17, 84/15, 33/16 and 83/15 respec-

tively. Statistical processing of the results was conducted 

using Excel, Statistica, Mathcad programs.

Tasks for analysis of production data

The existing practice of approaches to analysis of data 

bases for production control during manufacture of metal 

products is rather wide and various. However, if we shall not 

consider the problems connected with operating monitor-

ing of controlled parameters for each kind of products in all 

key points, we can see that continuous control and reveal of 

deviations during technological process on the base of statis-

tical methods (SPC) are mainly solved using managing of the 

technological process at the level of an assembly unit. E.g. it 

can be a digital twin, for example for a combined assembly 

unit “strip hot rolling mill – continuous pickling line”, using 

the model for scale growth to transfer predicted values of 

scale geometric parameters to a pickling unit [4]. The newest 

self-learning systems (algorithms) were widely used in metal 

processing for improvement of demand prediction accuracy. 

Prognostic models, which have been created on the base of 

these systems, were tested using archive data, and their con-

sequent correction for additional prediction accuracy im-

provement is conducted on the base of obtained results [5]. 

Different physical models are used for prediction realization. 

So, the company Hüttenwerke Krupp Mannesmann has de-

veloped the temperature model, which uses all important 

information for melt temperature evaluation and its predic-

tion, with permanent actualization of calculation results on 

the base of continuous receiving the data on current tem-

perature values [6]. This model provides precise temperature 

tuning in a basic oxygen convertor in the process of metal 

refining. To predict the temperature and carbon content in 

liquid steel in the end of blowing process (during basic oxy-

gen practice), as well as consumption of oxygen and cooling 

additives during blowing, the results of actual temperature 

measurements and determination of carbon content in the 

samples taken after blowing finishing were used as a learning 

stores of neural network [7]. Artificial neural networks were 

also used for simulation of required mechanical properties 

of structural steels [8].

However, the complete analysis of production data can 

be considered as an end-to-end analysis of the whole com-

plex of technological operations – from initial materials to 

finished products, in order to provide permanent quality 

management of metal products due to technological opti-

mization within tolerance range for these products. Modern 

large-scale metallurgical production is a long chain of op-

erations, where initial state of product and parameters of 

each technological stage can be basically measured and con-

trolled. Their quantity K varies for different technologies and 

reaches together ~ 100 parameters and more. The tried and 

tested technology provides setting the allowable limits {+ k
min;  

+ k
max}for each technological parameter; they determine a 

tolerance range. Quality of finished products is determined 

by !10 different quality parameters yi, their allowable level di 

is preset by the requirements of regulating or contract docu-

ments (yi > di or yi < di). The values of controlled and fin-

ished parameters are measuring in metallurgy for a melt, for 

a batch, for a coil, for a forging – actually for a piece of metal 

product. The complex K of actual values of {+ kn} parameters 

for the party of products presents the set of technological 

process trajectories; its evolution mechanisms of structure 

and defects (technological heredity) are realized within the 

framework of these processes. It leads to individual collec-

tion of quality parameters {yin}. This collection of trajecto-

ries can be practically endless within the framework of wide 

technological tolerance range (even if it is well mastered), 

and taking into account quantity of controlled parameters.  

In any case, data bases in the researched works did not 

include even two coinciding trajectories (for the separate 

technology). Such difference in operating scenarios of tech-

nological heredity leads to developed heterogeneity of struc-

tures which are usually of the same type. It caused substantial 

spread in values of tensile strength (�в), plasticity (�0.2) and 

especially impact strength (KCU, KCV) at different testing 

temperatures, even in the conditions of stable production, 

which can be accompanied by essential statistical heteroge-

neity of the values of process and product parameters. It is 

evident that absence of their evaluation can make difficult 

selection of optimal statistical procedures for development 

of decisive rules directed on quality improvement of metal 

products during operating data bases of production control.
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Statistics of the values of the process and product 
parameters for the researched technologies

Dispersion of the properties, first of all of impact strength, 

which mainly determines the level of metallurgical quality 

[1], was typical for all examined types of metal products, ob-

tained via investigated technologies (Table 1).

Such dispersion of metal quality should find its reflec-

tion in statistical nature of quality parameters. To evaluate 

this nature via coefficients of asymmetry Аs and kurtosis Еx,  

the features of their distribution was determined [9, 10].  

If Аs = 0, then distribution is symmetric (as for normal dis-

tribution), if Аs (by module) is less than <0.25, asymmetry 

is considered as slight, within the range 0.25-0.5 – medium 

and more than 0.5 – essential. It is shown that the values 

of asymmetry coefficients Аs for tensile strength (�в) and 

impact strength (КСU, КСV) of steel grades 38KhNMFA-

Sh, 40KhMFA, 17G1S-U, 09G2S, 15KhSND were var-

ied within the ranges: 1.86�0.09; 0.43�0.87; 1.70�1.90;  

-0.06�(-0.37); 0.25�0.35 and -0.43�0.35; -0.62�0.63; 

0.03�0.32; 0.93�1.07; 0.16�0.50 respectively. Analyzing the 

value of kurtosis coefficient Еx, peak sharpness degree of dis-

tribution was evaluated, based on understanding that empiric 

distribution id more high (“sharp-peaked”) at Еx & 0, relating 

to normal distribution (Еx=0), while at Еx ' 0 it is more low 

and slightly sloping. The values of Еx for tensile strength and 

impact strength of the steels varied for the examined data 

bases within the following ranges: 0.66�13.58; (-0.54)�0.10; 

6.82�7.77; 0.67�1.19; 0.01�0.95; and (-0.14)�0.80; 

1.41�3.26; -0.91�(-0.42); 0.73�1.86; 0.31�0.54 respectively.

These distribution characteristics and large dispersion of 

impact strength values (twofold and more) evidently testify 

that at least half of products has level of the properties above 

medium and can exceed this level substantially. It means that 

the considered technologies in general can provide manu-

facture of high quality metal products; it makes expedient 

“data excavating” from the plant technical control service 

(the passive experiment in K-dimensional space of the pro-

cess parameters +k) in order to reveal the causes of quality 

dispersion and improvement of its homogeneity at the upper 

level of distribution. Restriction of {+k
min ; +k

max} for several 

parameters of + k process (without principal varying of the 

technology) can be a problem solution in such case. 

Possibilities of digitalization provide continuous and 

complete process and product control, monitoring of pro-

duction parameters with reference to each melt, batch, 

forging or coil. Continuous archive storing of detailed infor-

mation on process and product parameters, quickness of ac-

cumulation of representative data stores, which are sufficient 

for objective analysis about causes of metal products quality 

heterogeneity, make prospective in this connection use of Big 

Data tools (non-uniform statistical procedures, additional 

development of “data excavating” algorithms) [11, 12]. 

It is evident that heterogeneity of product statistical na-

ture in particular is a consequence of variety of statistical 

nature of controlled parameters. It is not always taken into 

account practically, using different approaches to process-

ing of data stores of production control in metallurgy during 

end-to-end analysis of the technology (from metal melting 

to quality evaluation of metal products). It can finalize in 

obtaining the mixed results.

E.g., if we determine differences between two series of 

measurement results (volumes n1, and n2 respectively) for 

any characteristic, it is usually suggested that “histogram of 

the process (or product) parameters data should have the 

form of single-modal dome-shaped curve” [13]. Based on 

this, significance of the difference [<+>1 - <+>2] ��0 is usu-

ally evaluated by the average values <+>1 and <+>2 and their 

mean-square deviations according to the Student criterion; 

thereby normal distribution + is allowed. It can be followed, 

e.g., by existence of negative impact strength or content of 

any element included in steel composition [14]. Normal dis-

tribution means free forming of distribution “tails”, however 

they are cut for the process parameters in correspondence 

with the requirements of technological regulations. The val-

ues of Еx and Аs coefficients (if not equal to zero, but at least 

close to this value) should correspond to suggested single-

modal distribution [9, 10]. 

Quantity m of histograms is determined as m ~ 3,n for 

uniform distribution of the measuring value for decades,  

Table 1. Heterogeneity scale of quality of metal products 

Steel Type of 
product

Range of values �, (yi
max - yi

min) and average values within series

КСU+20 KCV 0 KCU-40 KCU-50 KCU-60

�в, MPa �, %
J / cm2

38KhN3MFA-Sh forging
63–28*

- -
58–20

-
1570–1340 17.5–8.8

47.4 ±4.4 40.1 ±4.4 1478 ±24,7 14 ±0.9

40KhMFA section
175–60

- - - -
1400–1030 20–7

100±19 1173.5±69.8 14.1±1.06

09G2S sheet
438–80

- - -
430 – 78 590–465 38–28

241.4 ±59.1 215.5 ±66.2 503.9 ±11.2 30.5±1.5

17G1S-U sheet -
375–28 388–25

- -
660–409 37–16.5

150.5
±41.5 137.1 ±44.9 557±26.7 27.8±2.4

15KhSND sheet
323–61

- - -
365–68 620–505 34–21

168.8 ±27.9 160.1 ±27.1 565.1±13.4 27.1±1.4

* Numerators include range of values �, denominators – average value within series with error
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Fig. 1. Distribution of the values of manganese content in sheet steel 17G1S-U (a), of nickel in forged steel 38KhN3MFA-Sh (b),  
of sulfur in section steel 40KhMFA (c) and of phosphorus in sheet steel 09G2S (d)

Table 2. The values of kurtosis Еx and asymmetry Аs distribution coefficients for elements content in chemical composition  

of researched steels 

Steel
As /Ex

C Si Mn P S Cr Ni Cu Ti Al

38KhN3MFA-Sh
0.42 1.25 -0.45 0.33 0.80 0.34 -0.13 0.95 - -

0.94 3.08 0.09 -0.52 0.69 0.14 -0.85 2.69 - -

40KhMFA
0.25 0.44 1.53 0.68 0.79 -1.00 1.62 0.45 2.36 -0.07

1.07 -0.02 4.39 0.72 0.53 8.19 3.59 0.79 5.21 0.24

09G2S
0.50 -0.09 -1.42 0.74 1.14 2.88 2.39 1.59 - 0.65

0.78 0.17 2.28 2.14 1.10 9.09 8.69 11.30 - 0.61

17G1S-U
0.09 -1.10 0.09 0.87 1.38 1.58 2.39 1.24 2.44 -0.12

-0.35 3.38 1.87 1.26 4.72 4.63 11.04 2.97 7.38 0.44

15KhSND
-0.005 0.20 0.67 1.24 0.90 -0.46 0.16 0.08 - 0.24

0.12 0.75 4.37 2.31 0.72 1.59 2.97 4.04 - -0.29

accompanies by achieving the minimal mean-square devia-

tion of revealed distribution in comparison with the true one 

[15]. However, building of these histograms, based on this 

condition, displays that their appearance can differ substan-

tially from symmetric single-modal distribution, and bimo-

dality can be often observed (Fig. 1). 

The wide range of variation of the coefficients Еx и  

Аs was typical for examined distribution of the values  

of technological parameters, such as chemical composition 

(Table 2).

Such variation of the values of distribution statistical 

characteristics for process parameters means that use of 

average values within the series and their dispersions � for 

evaluation of heterogeneity level of some events becomes 

problematic, what restricts possibilities of application of 

classic statistical criteria. Ignoring the distribution kind can 
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lead to contradictory results. E.g. if we compare manga-

nese content in sheet steel 09G2S, which was produced via 

electric arc melting or in basic oxygen converter (Fig. 2), 

their difference was evaluated with high risk 0.35 accord-

ing to the Student criterion and only 0.05 according to the 

Kolmogorov-Smirnov non-parametric criterion (which 

does not depend on distribution kind [16]). This difference 

can’t be “improved” due to increase of the series volume. 

Metallurgical “party” is usually a batch; quantity N of these 

batches with the same steel grade and dimension range is re-

stricted (N<1000-1500), then either technology, or order can 

be varied. Therefore, the risk connected with non-objective 

evaluation of difference between two series of controlled pa-

rameters can be rather high, if their distribution kind won’t 

be taken into account.

Application of the evaluation method for random repeat-

ability error “in the point” by the range � = +ik
max - +ik

min, or 

by variation coefficient �/+ik (oscillation �/+ik) can be not 

very efficient. Usually range elevates with increase of meas-

urements. However, the series presents at the same time also 

chronological (temporal, with reference to a date) group of 

measurements of the same value. Therefore different causes 

of range increase (dispersion) are possible, it can be not only 

variations of parameters with different amplitude relating to 

the average value (within the technological tolerance range), 

but also consequence of their trend effected by any cause; 

appearance of ”season” oscillations (periodical results of pa-

rameters measurements) is also possible (Fig. 3). It should 

be noted that the same causes will also “distort” the nature 

of average values within the series, which play the key role in 

many statistical procedures.

Even in the case of trend absence or periodical oscilla-

tions of measuring technological parameters, the principle 

“more measured – more found” does not work relating to 

ranges in metallurgy (probably, also in many other pro-

duction areas). It is evident that limi(#(+ik
max - +ik

min) =  

{+ k
min; + k

max}, what corresponds to a tolerance range of mas-

tered, “directive” technology (consequences of its exceed-

ing, such as technological violations, are not discussed in this 

article). This statement corresponds to observation results of 

variation regularities for ranges � of parameters with conse-

quent increase of observation series volume (in the frame-

work of a chronological row) (see Fig. 3). It is important that 

reaching the ultimate value (within observation scale) can 

occur in different ways. For example, reaching the maximal 

value of heating temperature for 38KhN3MFA-Sh steel bil-

let for forging in one of the furnace sections corresponded to 

No. 329 in the chronological series row which includes 342 

forgings, while ultimate phosphorus content was reached in 

the same row already in the forging No. 74. It means that 

not only the range value � of parameters causes interest for 

evaluation of technological heterogeneity scale, but also pe-

riodical character (time) of its appearance, while the range 

nature can be expressed as relationship of the values +ik
min 

and +ik
max with the average value <+ik> within the series. It is 

evident that reveal of such factors will be complicated in the 

framework of the same standard regression, as well as evalu-

ation of their effect on its results.

Search of the links between variations of controlled and 

finished parameters suggests indirectly that relationship be-

tween yk and technological parameters is common in the 

whole area of arguments existence. In this case, any cor-

rect regression equation provides the required boundaries 

of the optimum area, what determines its wide application. 

However, in metallurgy the field {xk} usually presents combi-

nation of interacting areas, each of them with its dominating 

type of physical relationship; it makes difficult then to use 

polynomes, which hardly approximate piece relationships 

[10]. If interaction of K factors is observed in this case, it is 

required to find ~K2/2 of “cross” terms cksxkxs of the regres-

sion equation; usually it is less than the quantity of points 

N<K2/2, which is practically accepted. As a result, disper-

sions of regression coefficients cks will become endless. 

Thereby, the attempts of metal quality management “by 

disturbance” are usually non-effective, even in the cases 

when the effect of such “evergreen” quality factors as sulfur 

and phosphorus content is evaluated. In particular, lowering 

of phosphorus content (separation of the values of impact 

Fig. 2. Distribution histograms of manganese content in 09G2S steel, produced via electric arc melting (a) or in basic oxygen  
converter (b)
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strength corresponding to increase content of impurities) 

in the investigated steel making technologies for the grades 

38KHN3MFA-Sh and 15KhSND does not lead to displace-

ment of histograms peaks of distribution of impact strength 

values in the area of higher values (Fig. 4). The series in-

cluded average values of impact strength relatively. Actually 

the initial variation range of impact strength values was saved 

for all histograms; moreover, quantity of parties with mini-

mal impact strength values decreased and metal parties with 

maximal impact strength values “dropped”. 

These circumstances also should 

be taken into account in the case of  

application of neural nets as a remedy 

for analysis of complicated non-linear 

relationships [7, 19, 20]. Transforming  

a multi-dimensional system to a func-

tion of several hidden variables, these cir-

cumstances shows the limits of possible 

decrease of searching space dimension-

ality {+}; however, type of these variables 

and their relationships leaves “inside the 

program”, so we have a solving “black 

box” at the exit. Taking into account the 

statistical nature of objects can promote 

learning optimization of neural nets and 

efficiency rise of their operation in gen-

eral. Such approach can also be useful in 

application of actively developing fuzzy 

logic algorithms, hybrid use of “soft cal-

culations” [17-20]. , which suggest that 

determined non-adaptive state function 

not always allows to provide required 

system operation, while fuzzy rules are 

based essentially on expert’s experience. 

It can be substantial for development of 

computer-aided learning methods, e.g. 

for use of logistic regression algorithms, 

support vector machines, random forest 

etc [21]. Importance of taking into ac-

count statistical nature of metallurgical 

objects has already shown its efficiency  

in using regression for narrowing space  

for parameters or application of compli-

cated heuristic techniques of cognitive 

graphics. They can be used for search-

ing the areas with dominating type of 

relationship during reveal of interacting 

deviations of technological parameters, 

which are related to different technologi-

cal stages, use of schemes of non-par-

ametric discrimination, not depending 

on kind of distribution (and more robust 

thereby) [12, 13]. 

Efficiency of use of through and 

comprehensive analysis of a long chain of 

technological operations along the whole 

production cycle (from initial materials 

to finished products), aimed on provid-

ing of continuous quality management, reveal of technologi-

cal “bottlenecks”, optimization of processes and products, 

is realized not only by supply of required software packages. 

Such analysis with use of a wide set of substantiated statisti-

cal procedures is activity for a professional technologist, not 

for statistical specialist, because it is based on the compe-

tence to formulate hypotheses about chains of events causes. 

These hypotheses are explained taking into account diversity 

of behaviour scenarios for technological heredity (within the 

framework of tolerance range of the concrete technology) 
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Fig. 3. Chronological sequence of the values of phosphorus content in forgings of 
steel 38KhN3MFA-Sh (a), their heating temperature for forging (b) and 
sulfur content in steel 17G1S-U (c), and corresponding relationships of 
variation of their ranges with increase of the series at elevation of 
the order number in a chronological row
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and can be principally checked on the base of 

programs from ready packages.

It is evident that success in creation of 

intelligent systems for quality management 

will be strongly determined by the progress in 

measurement digitalization for structures and 

fractures in the scale of a sample or product, 

taking into account their statistical nature 

[22]. Quantitative evaluations of structures 

and destruction will provide more complete 

and objective differentiation of metal products 

quality and reveal the structural causes of its 

heterogeneity, what is principally important 

for realization of the quality management 

principle by structure, i.e. using Big Data al-

gorithms.

Conclusion

Statistics of distribution of controlled and 

finished parameters was evaluated on the base 

of systematic analysis of representative data 

stores of production control in the process 

of manufacture of wide grade and dimension 

range of steels: large forgings of heat treatable 

38KhN3MFA-Sh steel, rolled products of 

40KhMFA steel, sheet 17G1S-U, 09G2S and 

15KhSND steels, within the framework of the 

technologies operating during different time 

periods of the technologies. It is characterized by variety of 

distribution kinds for parameters values (symmetric, asym-

metric and bimodal) and wide variation range of the values of 

their asymmetry and kurtosis coefficients for input and exit 

parameters (from -1.42 to 2.88 and from -1.86 to 2.46; from 

-0.85 to 11.04 and from -1.14 to 14.57 respectively). The tol-

erance ranges which were established for this process, restrict 

variation of parameters values and possibility of free forming 

of distribution tails. It can complicate use of many Big Data 

algorithms based on assumption about normal (symmetric) 

distribution type for the values, as well as corresponding pa-

rameters and criteria of classic statistics. In this connection, 

we prefer evaluations using criteria of non-parametric sta-

tistics, i.e. Kolmogorov-Smirnov criterion. 

Accumulation of data bases in metallurgy occurs within 

the framework of chronological (temporal) row of events, 

which can be accompanied by appearance of trends, sea-

son oscillations. It can violate probabilistic feature of the 

events which are considered during statistical processing 

and, together with restrictions introduced by technologi-

cal tolerance range, decrease efficiency of several statistical 

parameters. Among them the following parameters can be 

mentioned: range, variation (oscillation) coefficients, which 

use for evaluation of heterogeneity scale of process and prod-

ucts parameters during comparison of different observation 

series.

Absence of the common space for technological param-

eters in metallurgy, combined with restrictions which are 

introduced by differences of distribution statistics for val-

ues of controlled parameters, make low efficient use of “by 

disturbance” management principle. This circumstance is 

essential for selection of optimal procedures for Big Data 

algorithms in the case of development of intelligent sys-

tems with through quality management of metal products 

(from charge materials to finished products). Efficiency of 

such systems will be determined first of all by achieved un-

derstanding level for behaviour regularity of technological 

heredity within the framework of the concrete manufactur-

ing process of products on the base of the hypotheses about 

chains of events causes and their checking using optimal 

statistical procedures.
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