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The article considers an approach to combine the FEM method with the machine learning method in modeling the 

process of sheet metal cooling in a laminar cooling unit. A model of rolled products cooling based on the FEM has 

been developed; it considers the variable properties of the material and phase transformations. The high importance 

of taking into account physical processes, which occur on the surface of rolled products during cooling, is shown, 

namely influence of the surface temperature of rolled surface on the heat transfer coefficient. In first iteration data 

from literature was used for this dependenсe, afterwards it was adapted for the concrete case using iteration method. 

Especial importance of this phenomenon for calculation of cooling processes for rolled heavy plates (with thickness 

more than 30 mm) is shown. Two ways to calculate heat dissipation from phase transformations based on the Avrami 

formula and using the curve of relationship between heat capacity and temperature are given; they are used in a 

model depending on availability of data for the examined steel grade. Heat transfer coefficient was determined using 

machine learning methods in order to increase accuracy of calculations. The training set was built on the basis of 

industrial data, cleared from serial production factor and errors in sensors data signals. Several machine learning 

models were examined, the model based on gradient boosting of the catboost library displayed the best results.  

The optimal model parameters were selected using the GridSearchCV method of the Sklearn library or other built-

in methods. The most important factors (feature importance) were those that provide especial influence on the heat 

transfer coefficient - water flow, thickness of rolled products, temperature range of cooling, chemical composition 

of steel. 
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Introduction

Modern rolling mills manufacture products via the con-

trolled rolling technology, which is based on several struc-

tural mechanisms: grain refining, control of austenite-ferrite 

transformation and solid solution dispersion hardening.

Grain refining makes the maximal influence both on steel 

strength and cold resistance; at the same time the mist effect 

on ferrite grain size is provided by cooling of rolled products 

in accelerated cooling units. Such parameters as initial size 

of austenite grains before cooling, cooling rate and cool-

ing termination temperature determine number of ferrite  

nuclei [1, 2].

Possibility of prediction of rolled product final proper-

ties and provision of the required above-mentioned cooling 

parameters allow to form different mathematical models, 

which can help to calculate both average temperature of 

rolled products after cooling and its distribution across width 

of these products [3, 4].

Many such cooling models for rolled products are based 

on the finite elements method (FEM) [5-7]. This method is 

characterized by high accuracy of obtained results; however, 

it needs a lot of time for calculation and accuracy of deter-

mination of boundary conditions. The first of these restric-

tions is decisive in the case of searching an optimal solution  

(e.g. choice of transportation speed or water flows in the 

cooling unit).

Neural networks are applied for modeling of cooling 

process of rolled products, e.g. as in the work [8], where the 

authors obtained optimal structures and parameters of radial-

basic neural network and Takagi-Sugeno-Kanga neural net-

work with demonstration of high accuracy of such approach.

A cluster of models on the FEM base and machine 

learning methods is used recently more and more often. 

For example, in the work [9] it is suggested to use neu-

ral networks for solving reverse Cauchy problem. Using 

multi-layer networks as approximation, discretization 

without a networks is presented for solving the problems. 

Numerical results for the cases from 2D to 3D show that 

the approach with neural networks is easily distributed 

for a multi-dimension case in comparison with finite ele-

ments method. The articles [10, 11] consider a neural net-

works on FEM base for solving the boundary problems. 

The neural networks consists of nodal units and sub-net 

elements, which synaptic weights are previously determined 

using FEM formulation procedure. Unknown networks en-

trances are renewed using the net inversion method in order 

to meet the requirements of the main law and the bound-

ary conditions and, respectively, to solve the problem. 

Numerical modeling displays adequacy of this networks.
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Thus, the combination of the most practical properties 

of each method allows to achieve accuracy and rapidity of 

calculations, so it is perspective to use such hybrid models on 

the second level of automation of rolling mills.

Goal setting

The average value of surface temperature after cooling is 

the aimed parameter for models which are used for control 

of cooling units. Determination of the average temperature 

of rolled metal depends mostly on heat transfer coefficient, 

which depends in its turn on water consumption and other 

factors such as water temperature, rolled metal surface tem-

perature etc. In this paper, it is proposed to use machine 

learning methods to determine the heat transfer coefficient 

together with a FEM-based model to determine the average 

surface temperature of sheet metal after a cooling instal-

lation.

FEM model 

To determine the temperature in each point of plate, it is 

necessary to solve non-stationary equation of heat conduc-

tivity with the boundary conditions of third type [12]:   
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where � – heat conductivity coefficient, � – density, c – 

metal heat capacity, t – time, T – temperature, Tav – me-

dium temperature, � – heat transfer coefficient, " – area  

of the examined object, Г – boundary of the examined  

object.

Let us at first consider solution of the stationary task (i.e. 

the first part of the equation is equal to zero) via finite ele-

ments method, using rectangular elements. In this case the 

equation will be as follows:
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Residual error of the solution is:

R"� ������������������������������������������������������������������������������������(4)

where � – exact value of approximating function, 

�  – its approximation.

In order to decrease residual error, we need to equalize 

corresponding integrals within the whole area " to zero, 

while these integrals were taken with any weights Wi (these 

weights are accidental, but specially selected functions):

0; 1,2,3...iW R i�
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� ��� � ��                                                    (5)

In this case, execution of the boundary conditions can be 

provided in the same way via introduction of corresponding 

residual error, but along the object surface. If we summarize 

both residual errors and equalize them to zero, we shall get 

the following equation:

�
�

Г

�Wi ·R"��!"���Wi��R%���!%� �$&�i'��� �('�)�'�*+++                   (6)

The method of weighted residual errors for the heat con-

ductivity equation (3) and the boundary conditions (5), as 

soon as these equations are considered as unknown func-

tions, is expressed in the following way:
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If we divide the examined object, which occupies the 

area   " and has the boundary Г, into a lot of areas "i
e
 with 

boundaries Гi
e
, then we can write down the equation for each 

of these sub-areas.
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Let us agree, that approximation of the unknown tem-

perature function T will be searched in the form:

1

M

m�
�Т =      Tm ��Nm,                                                                          (9)

where Тm – nodal function value, Nm – basic function,  

m – node number, M – number of nodes.

Now, if we consider the basic functions themselves as 

weighted functions (Galerkin method), we shall get from 

the equation (8) 
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where l – element number.

Using here approximation (9), we obtain the following 

matrix equation:

K · T = f,                                                                                   (11)

When solving non-stationary problems, the partial dis-

cretization methods are widely used. In this case approxima-

tion of unknown function can be written down as:

1

M

m�
�Т = /��      am(t) ��Nm (x, y, z),                                            (12)

Where functions / and Nm are selected in such way, that 

the main boundary conditions will be executed. Then use of 
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the method of weighted residual errors allows to obtain the 

system of differential equations in vector form:

C �����������K ��T = f.
dT

dt
                                                                    (13)

Here C – so-called heat capacity matrix, its components 

can be expressed in the following way:

Clm =             ��Wl���Nm���d"'
c ���

��
�
%

                                                 (14)

where Wl – weighted function for the element l.

Other matrixes and their components can be found in the 

same way as for stationary case.

Now it remains to apply the finite elements method or 

the finite difference method to the equation (13) in order to 

get the required temperatures of nodes. As a result, we shall 

obtain:
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Then, applying different routes of solution (with differ-

ence backward (� = 1), forward (� = 0) or central difference  

(� = 0.5)), it is possible to get standard matrix equations of 

the type (13).

Realization of the algorithm for 
solving matrix equations

As soon as Galerkin method was used for selection 

of weighted functions, all matrixes of elements inputs 

(and, respectively, global matrixes too) will be symmetric. 

Additionally, they will have weakly filled structure (sparse 

matrixes), what is typical for the finite elements method.

Iteration methods with preconditioning are the most 

efficient ways for solving such systems of linear algebraic 

equations (SLAE). There is also no need to store zero ele-

ments and provide actions with them in order to decrease the 

required time for calculations. Special methods of storage 

for sparse matrixes are used for this purpose; CSR route is 

chosen in this work [13]. 

To solve sparse SLAE, the conjugate gradients method 

with preconditioning in the form of Kholetsky dissolution is 

used in the model [14]. 

Taking the boundary conditions into account

Plate cooling in the accelerated cooling unit should be 

considered as a complex process, because the following pro-

cesses take place during cooling [15]:

- forced convection;

- water heating up to the boiling temperature;

- evaporation;

- heat transfer through vapor (Leidenfrost effect).

As soon as physical nature of these processes is com-

plicated [16], calculating of heat flows on the boundary of 

media separation is difficult in this case. Thereby use of the 

boundary conditions of third type will be optimal, because 

heat transfer coefficient will be considered as a complex pa-

rameter, taking into account all processes, i.e.:

� = f(Q, Twater, ...),  (16)

where Q – water flow in the unit, Twater – water  

temperature.

Material properties and taking phase transformations 
into account

Material properties were preset on the base of literature 

sources for low alloy steels [17], while heat conductivity, heat 

capacity, density depend on temperature in the concrete  

networks node. 

As soon as essential amount of heat is extracted in the 

process of austenite – ferrite (bainite) transformation, this 

phenomenon should be taken into account in plate tempera-

ture calculation.

We can take heat extraction into account, if we shall con-

sider it as an internal heat source, according to the following 

formula [18-20]:

q = �Hi ���������+
dXi

dt
                                                                        (17)

where �Hi – heat amount from transformation at the given 

temperature Ti, Xi – part of volume which was subjected to 

transformation, expressed in time function.

After air cooling, austenite decomposition is described 

as isothermal transformation. The Avrami formula can be 

used here:

 = 1 � exp(–k · tn),
X

Xe                                                                (18)

where Xe – thermodynamic equilibrium part, which can be 

determined from phase diagram for the given temperature 

and cooling rate, k and n – material coefficient.

It is necessary to consider non-isothermal character of 

transformation process in the case of water cooling. In its 

turn, transformation can be considered as a sum of discrete 

isothermal steps:
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where 
'
it  - time required for transformation to the part Xi-1 at 

the temperature at i-step, �t – step in time.

There is an alternative approach to modeling of 

phase transformations – accounting of only heat ca-

pacity variation [21]. This approach is not so precise, 
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because it does not take into account kinetics of phase 

transformation and does not allow to calculate metal 

structure in time. However, the value of phase trans-

formation heat can be obtained from the graph with 

dependence between heat capacity and temperature.  

It is equal to the figure (triangle) area, which reflects phase 

transformations in steel. It should be noted that this graph 

will differ for different cooling rates. Both methods were 

used in this work, and their use is determined by presence 

of data about the examined steel grade. 

Interface of the FEM-based program

The above-described relationships and approaches are 

put in the basis of the developed Java software program, 

which allows to calculate cooling process of rolled metal in 

accelerated cooling unit at a plate rolling mill. The following 

parameters are used as the initial data: 

- number of elements in plate length and thickness (non-

uniform networks with a smaller element near the surface 

was used);

Fig. 1. General view of initial data in the model interface
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- heat transfer coefficient from sheet to air (accepting 

20 Wt/m2/С);

- heat transfer coefficient from sheet to extraneous water 

(accepting 200 Wt/m2/С);

- transportation speed in time;

- water consumption in time;

- water temperature;

- air temperature;

- sheet length and thickness;

- data on material properties (temperature conductivity, 

heat capacity, density, radiation capacity);

- temperature distribution along sheet length (a signal 

from pyrometer);

- temperature distribution across sheet thickness; 

- time step.

General view of initial data in the model interface is pre-

sented on the Fig. 1.

The program calculation is resulted in temperature vari-

ation in each net node and also across its section (see the 

example on the Fig. 2).

 

General principle of heat transfer coefficient determination

It is known from the technical literature [22, 23] that heat 

transfer coefficient (HTC) during water cooling depends 

on many factors (such as surface temperature, transporta-

Fig. 2. Screen example with results of calculation
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Fig. 3. Variation of the coefficient of heat transfer coefficient 
from the surface of rolled product depending on its 
temperature 
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consumption without accounting dependence from  
Fig. 3



Metal Forming and Tubemaking CIS Iron and Steel Review — Vol. 25 (2023), pp. 58–66

63

tion speed, scale structure etc.), but first of all on surface 

temperature. This dependence is characterized by per-

manent growth of this coefficient up to temperature 200-

300 °C with its consequent lowering (Leidenfrost point).  

This circumstance was also taken in the developed model, 

however, a set of calculations within the above-described 

program was conducted for curve adaptation to indus-

trial conditions and for provision of higher accuracy.  

The dependence was preset as HTC function from sur-

face temperature and was approximated by a fifth degree 

polynom (see Fig. 3). This coefficient is multiplied during 

calculation on any basic HTC value. 

The following algorithm was applied for adaptation 

process: the required parameters of cooled rolled plate and 

cooling unit were selected, then the average temperature 

value was calculated and compared with the really obtained 

data. Afterwards the curve profile was varied (peak displace-

ment and coefficient distribution), and calculation was re-

peated until maximal accuracy of the experiments will be 

achieved.

It is especially important to take into account the 

heat removal efficiency factor when calculating the cool-

ing of thick rolled products (>30 mm) and when cool-

ing down to low temperatures (below 300 °C). The sur-

face of rolled products with large thickness is cooled to  

the temperatures lower than 200-300 °C (with more hot 

core), that leads to high values of heat transfer coef-

ficient. The surface of more thin rolled product, while  

being cooled to the typical temperatures about  

500 °C, does not acceed temperatures close to the be-

ginning of Leidentrost effect, thereby it is less sensitive 

to the examined coefficient. That’s why, if we com-

pare Fig. 4, where the coefficient is considered equal to 1,  

and Fig. 5, we can see principally larger HTC determi-

nation with the same water consumption for different  

strip thickness values and different cooling temperature 

ranges.

The value of heat transfer coefficient agrees with  

literature data and is within the range 500-14,000 Wt/m2/K 

(taking into account the coefficient value on the Fig. 5).

Fig. 5. Relationship between heat transfer coefficient and water 
consumption with accounting dependence from Fig. 3
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Table 1. List of indicators for heat transfer determination 

Act_thk Sheet thickness

Act_wdt Sheet width

Act_len Sheet length

Water_flow_lam_inner_bot Average consumption in the upper collector

Water_flow_lam_inner_top Average consumption in the lower collector

Plt_cool_spd_avg Average transportation speed in f controlled cooling unit

Water_temp_laminar_cooling Water temperature

Head_masking_top_length

Masking parameters

Head_masking_top_flow

Head_masking_bottom_length

Head_masking_bottom_flow

Tail_masking_top_length

Tail_masking_top_flow

Tail_masking_bottom_length

Tail_masking_bottom_flow

Perc_C, Perc_MN, Perc_SI, Perc_NI, Perc_CR, 

Perc_TI, Perc_NB
Chemical composition

Collectors_number Number of collectors

Pyr6 Average value at the entrance of a cooling unit

Flatness Average value by flatness measuring device

Alfa Calculated heat transfer coefficient
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Creation of the model for prediction of heat transfer 
coefficient depending on water consumption and other 
parameters, on the base of machine learning methods

It was mentioned above that heat transfer coefficient de-

pends on surface temperature, and it is especially observed 

during cooling of rolled product with large thickness (more 

than 30 mm). Thereby two models were developed on the 

base of machine learning methods: one for thicknesses less 

than 30 mm, another for thicknesses more than 30 mm.  

This circumstance was additionally substantiated by rather 

larger amount of manufactured rolled product with thick-

ness 5 30 mm.

The following indicators were presented as initial data 

(Table 1).

Initial data set consists of more than 10,000 sheets of 

pipe, micro-alloyed, high-strength and medium carbon steel 

grades; however, as soon as rolled products were manufac-

tured in batches with 10-20 sheets in each of them, with 

equal cooling parameters within one batch, 5 sheets were 

selected from every batch for data balancing. These data 

were cleaned from error cases in pyrometer measurements  

(e.g. cooling lower that sensitivity threshold)m from errors in 

databases etc. The final data set included totally 1,849 sheets  

(1,315 sheets with thicknesses less than 30 mm and  

534 sheets with thicknesses more than 30 mm). The main 

parameters of cooled rolled products within this data set are 

presented on the Fig. 6.

It is known that use of neural nets is inexpedient for such 

data set [24], what was checked within the framework of this 
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Fig. 6. The main parameters of cooled rolled products in the examined data collection

Table 2. The results of models operation for thicknesses less than 30 mm

Model Determination coefficient R2 for training 
(testing) collections

Mean square deviation RMSE for training 
(testing) collections

Solving trees 0.89 (0.82) 98.5 (151.5)

Random forest 0.89 (0.80) 98.7 (159.9)

Catboost 0.98 (0.89) 39.4 (100.1)

LightGBM 0.91 (0.88) 102.6 (113.7)

XGBoost 0.93 (0.89) 81.4 (102.1)
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research: neural nets provided essentially worse results in 

comparison with classic methods and with gradient boost-

ing method.

To search the most exact model, the results of the follow-

ing methods were analyzed:

• Solving trees

• Random forest

• Gradient boosting

6 Catboost library

6 LightGBM library

6 XGBoost library

The models were learnt with separation in testing and 

training sets with their relation 20 % to 80 %. To search the 

optimal parameters, the method GridSearchCV of Sklearn 

library (or other methods which are built in the libraries) 

was used.

The results of models operation for thicknesses less than 

30 mm are presented in the Table 2. 

The best results were noted for the model on the base of 

Cardboost library. The best parameters of this model are as 

follows: {'loss_function': 'RMSE', 'l2_leaf_reg': 10, 'depth': 6, 

'learning_rate': 0.1 , 'max_leaves': 64, 'min_fold_size': 100}. 

Importance of features is presented on the Fig. 7.

The most important model features are thickness of rolled 

products, finishing cooling temperature (it was noted previ-

ously), water consumption, length of rolled products and 

speed of their transportation. Influence of alloying elements 

(variation of thermal physical properties of rolled products 

with different chemical composition) can be also seen.

The model on the base of Catboost library also displayed 

the best results for thicknesses more than 30 mm. Total ac-

curacy of the models by RMSE is 87.3, calculation results 

are presented on the Fig. 8.

Calculation of the average sheet surface temperature 

value within the testing collection displayed satisfactory re-

sults (95.89 % of cases were located within the range ±30 °С 

from the aimed value) (Fig. 9). In this case all sheets from a 

batch and all thicknesses were taken into account.

Maximal error was observed for thicknesses about  

10 mm, what can be explained by maximal sensitivity of thin 

Fig. 8. Obtained accuracy of heat transfer coefficient 
determination

Fig. 9. The error in average temperature calculation for sheet 
surface after accelerated cooling unit
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Fig. 7. Importance of model fetaures for determination of heat transfer coefficient 
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rolled products during cooling to errors in heat transfer coef-

ficient determination. In general, such accuracy of average 

temperature determination on rolled products surface in a 

cooling unit of plate rolling mill meets the requirements to 

the models which are used at production sites.

Conclusions

1. The developed FEM-based cooling model for rolled 

products in accelerated cooling unit, which takes into ac-

count variable material properties, phase transformations 

and dependence of heat transfer coefficient from surface 

temperature, allows to determine average temperature of 

rolled product surface after accelerated cooling with satis-

factory accuracy in production conditions.

2. Influence of relationship between surface temperature 

dependence on determination of heat transfer coefficient 

and high importance of accounting of this effect for calcu-

lation of cooling procedure of heavy plates (with thickness 

more than 30 mm) is shown.

3. The gradient boosting method on the base of Catboost 

library provided maximal accuracy of determination of heat 

transfer coefficient. The coefficient of determination for 

the model R2 = 0.98-0.89 (for training / testing collection), 

mean square deviation RMSE = 39.4-100.1.

4. The most important parameters for determination of 

heat transfer coefficients were defined: rolled product thick-

ness and length, finishing cooling temperature, water con-

sumption, transportation speed of rolled metal.

5. Of the considered sample of 10,000 plates, more than 

95.89% of the calculated values were  within the range of 

±30 °C from the target value, which is acceptable in the 

production of rolled products using the controlled rolling 

technology.

The research was carried out within the program of 
strategic academic leadership of Russian Federation 
“Prioritet-2030”, which is directed on support of the pro-
grams for development of high school educational organiza-
tions, as well as within the scientific project “PRIOR/SN/
NU/22/SP5/26” “Creation of innovative digital tools for 
application of artificial intellect and advanced statistical 
analysis of big data in technological processes of metal pro-
duction” and also within the framework of scientific collab-
oration between Vyksa Steel Works and Bauman Moscow 
State Technical University.

REFERENCES
1. Efron L. I. Metal science in the “large” metallurgy. Pipe steels. 

Moscow: Metallurgizdat. 2012. 696 p.

2. Pogorzjelskiy V. I., Litvinenko D. A., Matrosov Yu. I., Ivanitskiy 

A. V. Controlled rolling. Moscow: Metallurgiya. 1979. 184 p.

3. Zinyagin A. G. Improvement of rolling and cooling processes for 

sheets from pipe steel grades at the 5000 rolling mill. Dissertation 

of Candidate of Technical Sciences. Specialty 05.02.09 “Tech-

nologies and machines of metal forming:. Moscow. 2014. 159 p.

4. Zinyagin A. G., Muntin A. V., Ilyinskiy V. I., Nikitin G. S. Math-

ematical simulation of the process of sheet accelerated colling at 

the 5000 rolling mill. Problemy chernoy metallurgii i materialove-

deniya. 2013. No. 1. pp. 9-15.

5. Ryabchikov M. Yu., Ryabchikova E. S., Shmanev D. E., Kokorin I. D.  

Management on steel strip cooling in flexible production of galva-

nized rolled sheet. Izvestiya vysshikh uchebnykh zavedeniy. Cher-

naya metallurgiya. 2021. Vol. 64. No. 7. pp. 519-529.

6. Poletskov P. P., Alekseev D. Yu., Kuznetsova A. S., Gulin A. E., 

Emaleeva D. G., Adishchev P. G. Analysis of cooling routes for 

rolled sheets on the base of computer modeling. Vestnik MGTU 

im. G. I. Nosova. 2022. No. 4. pp. 102-109.

7. Poletskov P. P., Kuznetsova A. S., Gulin A. E., Emaleeva D. G., 

Alekseev D. Yu. Study of the heat treatment process of sheet 

metal in the software package “Deforv-3D”. Norwegian Journal of  

Development of the International Science. 2022. No. 97. pp. 46-49. 

8. Sedykh I. A., Istomin V. A. Neural net modeling of strip cool-

ing process in a hot rolling mill. Vestnik VGU. Series: Sistemnyi  

analiz i informatsionnye tekhnologii. 2018. No. 2. pp. 116-125. 

DOI: 10.17308/sait.2019.2/1296. 

9. Ixin Li, Xianliang Hu, Artificial neural network approximations 

of Cauchy inverse problem for linear PDEs. Applied Mathemat-

ics and Computation. 2022. Vol. 414. 126678. DOI: 10.1016/j.

amc.2021.126678. 

10. Jun Takeuchi, Yukio Kosugi. Neural network representation 

of finite element method. Neural networks. 1994. Vol. 7. Iss. 2.  

pp. 389-395. DOI: 10.1016/0893-6080(94)90031-0.

11. Pothina H., Nagaraja K. V. Finite Element Method-Based Arti-

ficial Neural Network. In: ICT Analysis and Applications. Lec-

ture Notes in Networks and Systems. Springer, Singapore. 2022.  

Vol. 314. DOI: 10.1007/978-981-16-5655-2_73.

12. Zenkevich O., Morgan K. Finite elements and approximations. 

Moscow: Mir. 1986. 318 p.

13. Balandin M. Yu., Shurina E. P. Methods of solving the SLAE with 

large dimensionality. Novosibirsk: Izdatelstvo NGTU. 2000. 70 p.

14. George A., Lyu J. Numerical solving of large sparse system of 

equations. Moscow: Mir. 1984. 333 p.

15. Tolubinskiy V. I. Heat exchange during boiling. Kiev: Naukova 

dumka. 1980. 316 p.

16. Saeychev V. D., Nevskiy S. A., Ilyashenko A. V. On the mechanism 

of accelerated cooling in thermal strengthening of rolled product. 

Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 

2017. Vol. 60. No. 12. pp. 1005-1007. DOI: 10.17073/0368-0797-

2017-12-1005-1007.

17. Physical constants of some commercial steels at elevated tempera-

tures (based on measurements made at the National Physical Labo-

ratory, Teddington). Butterworths Scienctific Publations. 1953.

18. Sun C. G., Han H. N., Lee J. K. A Finite Element Model for 

the Prediction of Thermal and Metallurgical Behavior of Strip on 

Run-out-table in Hot Rolling. ISIJ International. 2002. Vol. 42. 

No. 4. pp. 392–400.

19. Saha S. K., Kumar A. Coupled Temperature-Microstructure 

Model for Predicting Temperature Distribution and Phase Trans-

formation in Steel for Arbitrary Cooling Curves. ASME. J. Ther-

mal Sci. Eng. Appl. 2021. June. DOI: 10.1115/1.4048212. 

20. Zhao H., Hu X., Cui J., Xing Z. Kinetic Model for the Phase 

Transformation of High-Strength Steel Under Arbitrary Cooling 

Conditions. Met. Mater. Int. 2019. Vol. 25. No. 2. pp. 381–395. 

DOI: 10.1007/s12540-018-0196-2.

21. Suehiro M., Oda T., Senuma T. Development of mathematical 

model for predicting transformation of high-carbon steel during 

cooling on runout table and its application to on-line tempera-

ture control of hot strip mill. Nippon Steel Technical Report. 1995.  

Vol. 67. pp. 49-56.

22. Bamberg M., Prinz B. Determination of heat transfer coefficients 

during water cooling of metals. Materials Science and Technology. 

1986. Vol. 2. No. 4. pp. 410–415.

23. Gan Y. F., Chien C. C., Jang J. Y. et al. Experimental and 3-D 

Numerical Heat Transfer Analyses of Dual Spray Water Nozzle 

Impingement on a Flat Plate. Heat Mass Transfer. 2020. Vol. 56. 

pp. 2397–2412. DOI: 10.1007/s00231-020-02870-5.

24. Mukhamediev R., Symagulov A., Kuchin Y., Yakunin K., Yelis 

M. From Classical Machine Learning to Deep Neural Networks: 

A Simplified Scientometric Review. Applied Sciences. 2021.  

Vol. 11. No. 12.

CIS




