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In this work, a computer vision system is proposed, which allows the identification and localization of pitting cor-

rosion on metallic surface of the gas pipelines made of low carbon and low alloy steels. For this purpose, a dataset 

of 5,760 images of pipeline surface with and without pitting corrosion was collected. The developed convolutional 

neural network (CNN) architecture was trained on this dataset. The hyperparameters of this architecture were 

optimized using Bayesian optimization. The developed and optimized CNN architecture does not have a large 

number of trainable parameters compared to existing CNN-based architectures. Also, the developed architecture 

showed significantly higher accuracy of 98.44 %, when classifying images into images without corrosion and with 

pitting corrosion. The developed CNN outperformed most existing classifiers in its parameters. A pitting corrosion 

localization system was also developed using the “sliding windows” and “image pyramid” methods, which made it 

possible to localize areas with identified pitting corrosion on the surface of pipelines made of low carbon and low 

alloy steels, using the developed CNN without additional labeling of the data set. The proposed deep learning ap-

proach will eliminate the need for the operator to visually inspect the pipeline for pitting corrosion, which is costly 

and time-consuming method.

Key words: energy, industry 4.0, gas pipelines, energy transition, natural resources, non-destructive testing; life-

cycle assessment, deep learning, convolutional neural networks, object detection.

DOI: 10.17580/cisisr.2024.01.15

Introduction

At present time gas pipelines are the main way for natural 

gas transportation, and their quantity only increases. Analysis 

of the works [1–4] shows that surface corrosion defects are 

met most often in gas pipelines during their operation; they 

are caused by the environment affect. These defects can be 

classified on plane ones (e.g. stress corrosion cracks) and vol-

umetric defects, such as local pitting corrosion [5]. Several 

methods of non-destructive testing (NDT), which can reveal 

such defects automatically, are used in the industry. Visual 

methods as well as magnetic, eddy-current and ultrasonic 

methods are applied most often. Use of NDT methods sepa-

rately can’t provide collection of data set required for reli-

able classification of surface defects by their types, thereby 

combination of data received via different NDT methods is 

required to solve this problem. Joint processing of the re-

sults of ultrasonic and eddy-current control was examined 

in [6], use of Bayes conclusion and Dempster-Shafer theory 

are displayed in [7]; they are aimed on creation of a classi-

fier for surface defects by their types. The observed NDT 

methods are characterized by false measuring results, while 

analysis of these results can be accompanied by false detec-

tion of large putting corrosion as the area without contact 

between transformer and gas pipeline metal. Appearance of 

pitting corrosion can be easily revealed visually, but in auto-

matic mode a visual inspection is realized using TV control 

cameras. Analysis of pictures of the whole pipeline surface, 

which are obtained from TV control cameras, requires large 

volume of data set storage and essential labour efforts. In this 

connection, TV control system should be supplied by the 

model of computer vision, which can classify the images as 

snapshots without corrosion and snapshots with pitting cor-

rosion, as well as to provide localization of pitting corrosion 

on the images. 

At present time, there are a row of researches describing 

detection of external corrosion in pipelines using TV con-

trol equipped with computer vision function. This detection 

usually is accomplished with use of conventional algorithms 

of computer vision, machine and deep learning. These tech-

nologies were used for identification of corrosion defects on 

metallic surface [8–13]. 

Many kinds of architecture of convolutional neural net-

works (CNN) were suggested recently [14–19], they provide 

reliable classification of images based on the known data sets. 

Now deep CNN are used in various industries [20–24]; CNN 

is also applied for corrosion detection during processing of 

images [25–30]. This research is also devoted to develop-

ment of the CNN-based model, which allows to identify cor-

rosion of the pipeline surface; however the developed model 

is intended for classification of images without corrosion and 

images with pitting corrosion, as well as for its localization.
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Rust and other variations of surface colour, when loss of 

wall thickness does not exceed 0.01 mm, are allowable for 

pipelines, because they don’t decrease mechanical proper-

ties of a pipeline. Thus, rust with various colours and non-

clean (not rusty) surface will be classified as images without 

corrosion. Images with pitting corrosion, with real danger 

of metal loss in a cavity, are classified as images with cor-

rosion. This model was not found in the literature (most of 

models determine different rust degrees, as well as other 

defects), thereby the aim of this research is collection of the 

corresponding data, development of such model, its learn-

ing and efficiency assessment. Use of such system, allowing 

to identify and localize pitting corrosion on images together 

with ultrasonic and eddy-current NDT methods, as well 

as with use of laser triangular sensors, will provide reliable 

identification of type of the surface defects and to determine 

their parameters. 

The technique of research and materials

Data set
The features of data set, as a rule, have maximal effect 

on the process of CNN learning. At present day, there is 

no assembled data set in open access, to provide classifica-

tion of images with pitting corrosion and without corrosion, 

and obtaining of a rather large data set with pipeline surface 

Fig. 1. Examples from the data set of images without corrosion (a) and with pitting corrosion (b) on the surface  
of pipelines made from low-carbon and low-alloy steel 

images having pitting corrosion is not a simple task. Many 

pictures of defects on different metallic surfaces under vari-

ous angles were made at many oil and gas industrial objects 

with non-destructive testing applied. All examined objects 

were manufactured from structural low-alloy steel or other 

low-carbon low-alloy steels with similar properties. The 

all these pictures were cut to the size 224 × 224 pix. The 

images from video shooting of TV surface control of pipe-

lines, made from low-carbon low-alloy steels, were added 

to this data set afterwards. These images were also cut to 

the same size. At last, a row of pitting corrosion pictures 

were found in public data banks, such as www.shutterstock.

com and www.dreamstime.com. Several images were got as 

a result of simple Internet search. The final data set consists  

of 5,760 images, where 4,270 pictures are images without 

corrosion and 1,490 images – with pitting corrosion. The 

examples of both classes are shown in the Fig. 1.

During the process of model development, the data set 

was divided to learning, validating and testing sets with ran-

dom change of images, but the relative amount of each image 

class in total data set was the same. However, testing and 

validating sets have the same size and occupy totally 20 % 

of the whole data set. Additionally, the examined data set 

was characterized by imbalance of classes; there were images 

without corrosion approximately by 2.87 times more than 

images with pitting corrosion. 

(a)                                                                                                  (b)
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Model synthesis
At present time, use of deep learning technologies is one 

of the most efficient practice for image analysis. In particular, 

CNN as deep learning models present dominating approach 

for classification of images, reveal of objects and other tasks 

of computer vision. There are many kinds of CNN architec-

ture today, such as AlexNet [14], ZFNet [15], VGGNet [16], 

Inception [17], ResNet [18] and Xception [19]. Use of the 

models which were preliminarily learnt by ImageNet data set 

is not recommended, because examined images are seriously 

varied from the images of ImageNet data set.

The models based on the above-mentioned architecture 

were learnt from scratch in the examined data set, and the 

best results were observed for the model based on ZFNet 

architecture. To provide maximal reliability during classi-

fication, self architecture based on ZFNet base was built. 

Original ZFNet architecture has its own flatten layer and 

two fully connected layers with 4096 parameters. However, 

fully connected layers are tended to overfitting, thereby the 

developed CNN has a layer of global average pooling (GAP) 

[31], which decreases number of parameters and possibility 

of the overfitting. The number of filters is also diminished in 

the developed CNN: 64 in the first two convolutional layers 

and 128 in other convolutional layers. Different modifica-

tions were tested manually, but this modification displayed 

the best results. To find the most optimal architecture of the 

developed CNN, automatic search of its hyper-parameters 

was carried out. Use of such widely developed methods as  

grid and random search was not suitable in this case, because 

learning of the examined architecture takes a lot of time and 

calculating resources, while larger number of iterations is re-

quired for these searching methods. In this case, Bayes opti-

mization was used [32], applying different surrogate functions, 

such as Gauss process (GP) [33], randomized forest (subse-

quent model-based  algorithm configuration – SMAC) [34] 

and tree-structurized Parsen evaluation (TPE) [35]. 

When using Bayes optimization, the values of the aimed 

function were minimized relating to F1-score, because 

the data set has definite imbalance of classes. As a result, 

three developed architectures were obtained: initial self ar-

chitecture, self architecture with GP optimization and self 

architecture with SMAC optimization. All developed archi-

tectures trained from scratch on the training component of 

the examined data set. Learning was conducted with use of 

RMSprop optimization algorithm, with learning rate equal 

to 1 � 10–5. To prevent overfitting, L2 regulation with the pa-

rameter equal to 1 × 104 was used, while dropout with pos-

sibility 0.5 was used in fully connected layers. As soon as data 

set includes images from different sources, all architectures 

are characterized by mini-batch normalization [36] before 

activation functions. A data set has imbalance of classes, 

that’s why the function of losses was used with the following 

weights for classes; 1 for images without corrosion and 2.5 

for images with corrosion. To provide the best separation of 

classes, the tool «Label smoothing» with 0.3 parameter was 

used. CNN learning was realized by GPU nVidia RTX 3090 

with memory 24 GB, batch size was equal to 64. The whole 

required code was developed using Python 3.9 language, with 

assistance of generally available libraries TensorFlow (2.5.0) 

and OpenCV (4.5.1).

Various metrics were used to determine classifier reli-

ability for a testing data set. Confusion matrix is one of the 

most widely used methods in machine learning. It displays 

information about true classes and classes predicted via a 

model. Confusion matrix has two dimensions: true and pre-

dicted classes. The lines present an example of true class, 

while the columns – calculated class. TP in the matrix of er-

rors means number of true positive examples, TN – number 

of true negative examples, FP number of false positive examples 

and FN – number of false negative examples. Metrics for 

examination of classification model efficiency are presented 

by accuracy, F1-score, area under the curve of receiving set 

operating parameter and under the curve of accuracy and 

recall (ROC AUC and P-R AUC respectively).

Accuracy means a number of correctly classified exam-

ples, which is divided by total number of examples, it is cal-

culated via the following formula (1):

(1)

F1 score is an average harmonic value of such parameters 

as precision and recall. Precision shows number of positive 

data which was predicted correctly. High precision means 

smaller number of false operations. Recall determines in-

tegrity of a classifier. Higher recall displays smaller number 

of false negative results, while smaller recall means larger 

number of such results. Precision decreases often with recall 

improvement [37]. Precision, recall and F1-score are calcu-

lated in the following ways (2) – (4):

(2)

(3)

(4)

The curve of receiving set operating parameter  

(ROC-curve) is a graph of relationship between frequency 

of true positive results (TPR) and frequency of false posi-

tive results (FPR) with different threshold values of a clas-

sifier. Area under the curve (AUC) is the main parameter 

of a ROC-curve. The higher is AUC, the better is account 

of possible threshold values by a classifier. TPR and FPR  

are calculated in the following way (5) – (6):

(5)

(6)

The curve of precision-recall (P-R curve) is used for 

efficiency evaluation of binary classification models in the 

same way as ROC-curve. It is often used in situations, when 

classes are not strongly balanced. The curve of precision- 

recall is built via preparing the graph of relationship be-

tween precision and recall for one classifier and for different 

threshold values. AUC for P-R curve, as AUC for ROC-curve,  
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  Table 1. Reliability of developed architecture in comparison with ZFNet in a testing set

Architecture Accuracy, % F1-score, % ROC  AUC P-R  AUC

ZFNet 96.70 95.30 0.98 0.98

Developed 97.40 96.97 0.99 0.99

Developed with GP optimization 98.44 97.30 0.99 0.99

Developed with SMAC optimization 97.40 96.30 0.99 0.98

Fig. 2. Precision for developed architecture CNN and ZF Net 
for learning and testing data set: ZFNet and developed 
CNN (a); developed CNN with GP and SMAC 
optimizations (b)

(a)                                                         (b)

Fig. 3. ROC (a) and P-R (b) curves for developed architecture 
CNN and ZFNet

(a)                                                         (b)

  Table 2.  Developed CNN architecture with GP optimization

No. Layer Entrance Filter size Number of filters Step Exit
Number of 
parameters

1 Conv1 224 × 224 × 3 7 × 7 × 3 32 2 109 × 109 × 32 4736

2 Pool1 109 × 109 × 32 3 × 3 × 1 – 2 54 × 54 × 32 –

3 Conv2 54 × 54 × 32 7 × 7 × 32 128 2 24 × 24 × 128 200832

4 Pool2 24 × 24 × 128 3 × 3 × 1 – 2 11 × 11 × 128 –

5 Conv3 11 × 11 × 128 3 × 3 × 128 384 1 9 × 9 × 384 442752

6 Conv4 9 × 9 × 384 3 × 3 × 384 384 1 7 × 7 × 384 1327488

7 Conv5 7 × 7 × 384 3 × 3 × 384 128 1 5 × 5 × 128 442496

8 Pool3 5 × 5 × 128 3 × 3 × 1 – 2 2 × 2 × 128 –

9 GAP 2 × 2 × 128 – – – 128  –

10 FC 128 – 1 – 1 129

is a metrics within a range from 0 to 1. The higher is AUC  

for P-R curve, the better classifier operates. 

Reliability of the developed models with optimization 

in a testing set in comparison with ZFNet architecture is 

shown in the Table 1. Accuracy graphs for each epoch, for 

the developed CNN architecture, are displayed in the Fig. 
2. ROC and P-R curves for developed architecture can be 

seen in the Fig. 3. 

The best accuracy and F1-score results were displayed 

by the developed CNN architecture with GP optimization, 

with values 98.44 % and 97.3 % respectively; its complete 

architecture is presented in the Table 2.

The developed CNN architecture has also smaller num-

ber of parameters in comparison with other well-known ar-

chitectures. E.g., ZFNet architecture has about 30mln. pa-

rameters, VGG16 architecture – appr. 138 mln. parameters. 

The developed CNN architecture with GP optimization has 

only 2.4 mln. of learning parameters. Owing to smaller num-

ber of CNN parameters, class determination is quick and 

occupies less memory.

Experimental research and discussion

Reliability analysis of the developed model

Reliability analysis of the developed model was carried 

out for a testing data set, which was presented by images of 

pipelines from low-carbon and low-alloy steels. The calcula-

tion error matrix was built according to the developed CNN 

with GP optimization in the beginning of this analysis, it is 

shown in the Table 3.
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It can be seen that the model correctly determined the 

class of majority of images (567 pictures). However, there 

were also mistakes: 6 images with pitting corrosion were clas-

sified as the images without corrosion, while 3 images without 

corrosion were identified as images with pitting corrosion.

Based on the results of conducted research, the 

CNN-based model was created; it allows to classify the im-

ages as images without corrosion and images with pitting 

corrosion on the surface of pipelines from low-carbon and 

low-alloy steels. In addition to identification of pitting corro-

sion in an image, it is usually required to provide localization 

of identified pitting corrosion. There are a lot of methods 

for detection of objects in images, which use conventional 

techniques of computer vision [38, 39] and deep learning 

[40–42]. However, these methods require a lot of data for 

learning, and these data are marked in accordance with a 

specialized format. This marking concludes not in classifying 

each image with a definite class, but in extraction of the area 

which corresponds to the examined object in an image and 

determination of its class. Such marking of a data set needs 

large labour expenses, as well as consequent learning with 

other more complicated models.

This research used the method of “sliding windows”, 

when the preset area, presented by a triangle with preset 

number of pixels, moves along the image with definite step. 

The image obtained in this “window” is classified during 

each step using the developed CNN-based classifier. The 

method of “sliding windows” was applied together with the 

“pyramid of images”, and image scaling occurred as a result 

in addition to “window” moving. As a result, a row of objects 

identified as pitting corrosion, were detected in the examined 

image. Integration of the detected areas occurs using non-

maximum suppression technology (NMS) [43]. The general 

scheme of localization algorithm and identified pitting cor-

rosion is presented in the Fig. 4.

  Table 3. The calculation error matrix according to the developed CNN with GP optimization for a testing data set 

True class
Without corrosion 424 3

Pitting corrosion 6 143

Without corrosion Pitting corrosion

Class determined by a model

Fig. 4. General scheme of localization algorithm for 
identified pitting corrosion 

The examples of localization of identified pitting corro-

sion before and after NMS are displayed in the Fig. 5.

It can be seen from the Fig. 5 that the system identifies 

and localizes pitting corrosion (areas with metal loss), as well 

as changes in texture of the main metal, welding seam and 

other contaminations, which have no effect on mechani-

cal properties of pipelines from low-carbon and low-alloy 

steels. Calculation of number of identified objects and their 

summarized square allows to evaluate number of pitting and 

caverns per surface unit, what is necessary for carrying out 

calculations of surface. 

Conclusion

Surface defects, such as pitting corrosion, which can 

be easily detected via visual control, are forming on the 

external surface of gas pipelines manufactured from low-

carbon and low-alloy steels. TV control cameras are usu-

ally used for automatic visual control. Manual saving and 

analysis of images from the whole pipeline surface is very 

labour-intensive process. In this connection, TV control 

systems are usually equipped with computer vision models, 

which can conduct identification and localization of pit-

ting corrosion on metallic surface. The set including 5,760 

images without corrosion and with pitting corrosion was 

created in this research. Self architecture on the base of 

well-known ZFNet architecture was also developed; con-

sequently it was optimized using Bayes optimization with 

surrogate functions of GP and SMAC types. GP-optimized 

architecture displays the best results with accuracy 98.4 %. 

The developed architecture has less number of parameters 

and operated rather better than other CNN architectures. 

The scheme for localization of identified pitting corrosion 

in images was created. These images were received from 

the surface of pipelines manufactured from low-carbon and 

low-alloy steels, using the method of “sliding windows” and 

“pyramid of images”. 

The research was carried out with financial support of 
the grant of Russian Scientific Fund No. 22-29-00524, 
https://rscf.ru/project/22-29-00524/.
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