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This paper presents an approach to predicting Continuous Cooling Transformation (CCT) diagrams of low-carbon 

steels using a mathematical model based on regression and classification. The method of digitizing CCT diagrams 

and its application taken from atlases and current scientific articles are given. The digitization method is based on 

reading the color value from the CCT diagram image and then converting the coordinates of the color position in 

accordance with the scale of the CCT diagram axes. It was assumed that CCT diagram consists of zones defined by 

the beginning and end of ferrite transformation, the beginning of pearlite transformation, the end of bainite trans-

formation, and the beginning and end of martensite transformation. When developing a predictive mathematical 

model, an optimization algorithm was used to find a model with the best hyperparameters among classical machine 

learning models (k-Nearest Neighbors, Support Vector Machine, Linear/Logistic Regression) and based on deci-

sion trees (LightGBM, CatBoost). The model solves regression (temperature prediction) and classification (binary 

mask prediction) problems. The superimposition of a binary mask on the temperature vector made it possible to 

constrain the resulting phase transformation curve along the time axis. To build test CCT diagrams, a number of 

dilatometric studies of four steel grades were carried out. The new predictive approach made it possible to achieve 

satisfactory values of metrics on test CCT diagrams. The average absolute error did not exceed 20°C; the coefficient 

of determination was in the range of 0.55–0.86, but for the martensite transformation it took negative values, which 

can be explained by the initial approximation of the transformation by a polygonal chain; ROC AUC metric was at 

least 0.80.
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1. Introduction

Production of rolled products with specified properties 

is carried out using controlled rolling technology, which in-

cludes three main phases: the roughing stage with austenite 

grain refinement due to deformation in the mill, followed 

by cooling below the recrystallization temperature with 

subsequent deformation of the resulting grain, introducing 

the maximum number of defects into the metal structure. 

These defects act as nuclei for new grains during the next 

phase – cooling of the rolled product, resulting in a fine-

grained structure with a specific phase composition (ferrite, 

pearlite, bainite, martensite).

In the development of rolling technology, it is necessary 

to determine the critical points of steel — the recrystalli-

zation temperature, the Chernov points (A1, A3), as well as 

the temperatures at the start of phase transformations, for 

which continuous cooling transformation (CCT) diagrams 

are used. CCT diagrams serve as a guide when choosing 

the cooling schedule (selection of the start and end cooling 

temperatures and cooling rate). Despite known drawbacks, 

the main one being the constant cooling rate, which is not 

maintained during the actual rolling process [1].

The construction of CCT diagrams is carried out on 

dilatometers and involves the need to prepare samples, con-

duct tests, and significant labor costs for laboratory assistants 

in interpreting the results obtained. Moreover, modern roll-

ing mills to produce a single steel grade may use up to thirty 

variants (depending on the requirements) of chemical com-

positions, differing in alloying concepts, which necessitates 

constructing a CCT diagram for each one. The development 

of machine learning, along with the accumulated data set 

from published works on CCT diagrams, enables research 

to develop models for predicting CCT diagrams based on 

chemical composition.

Initial approaches to the analytical description of CCT 

curves involved linear equations with variables in the form of 

the chemical element content. The main limitation of this 

approach is the narrow range of chemical element content 

in which it provides satisfactory results. For example, in the 

study [2], the values of coefficients of empirical equations 

were selected based on the least squares method for the CCT 

diagram obtained from the experiment.

Modern machine learning methods and models allow to 

discover new implicit and complex nonlinear dependencies 

in the data that improves modeling results. In the studies [3, 

4] different solutions for prediction of material phase com-

position based on neural networks and classical models are 

represented as well as the economic benefits of their imple-

mentation.
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In the study [5], the Long-Short-Term Memory (LSTM) 

architecture was used for phase transformation predictions. 

It was noted that this architecture is suitable for solving the 

problem since the curve of an individual transformation is 

a function of time (this architecture is developed for time 

series prediction [6]) and shows satisfactory results. The work 

predicted the percentage of phases depending on the selected 

cooling rate, with an average error of no more than 10 %.

The research [7] demonstrates the possibility of us-

ing fully connected neural networks to predict isothermal 

transformation curves for nickel-aluminum alloys, showing 

higher accuracy compared to existing analytical methods.

In the study [8], a higher accuracy of the gradient boost-

ing model was demonstrated in predicting the start of ferrite 

transformation for carbon steels compared to the “JMatPro” 

program and decision tree methods.

In the study [9], researchers used an individual model  

for each curve of the start and end of transformations, also 

applying the gradient boosting method and obtaining satis-

factory accuracy within ±20 � over a wide range of varying 

element content. This paper demonstrates the application of 

gradient boosting models for predicting transformation curves 

using a combination of regression tasks to calculate the trans-

formation start temperature and classification tasks to deter-

mine the boundaries of the corresponding transformation.

2. Methods

2.1. Problem Statement

The variety of possible phases complicates data collec-

tion and the formation of the final dataset. Therefore, it was 

assumed that the CCT diagram consists of the curves pre-

sented in Table 1, as information on these curves is the most 

common.

The solution to the binary classification task is a binary 

mask:
f c (X) = mask �������������������������������������������������������������������(2)

where f c is the classifier; X – is the matrix of input fea-

tures; mask � is a vector consisting of zeros and ones, with 

each component corresponding to an observation from X.

The desired vector of predicted phase transformation 

temperature values is obtained by the Hadamard product of 

the temperature vector and the binary mask:

f r (X) • f c (X) = � • mask �                     (3)
Zero values of the components of the obtained vector 

are excluded from the final solution. A visualization of the 

application of the mask followed by the exclusion of zero 

values is shown in Fig. 1.

Table 1. Designation and Description of Transformations

Transformation Transformation Description

FS Start of Ferrite Transformation

FF End of Ferrite Transformation

PS Start of Pearlite Transformation

BF End of Bainite Transformation

MS Start of Martensite Transformation

MF End of Martensite Transformation

For each phase transformation curve, an individual func-

tion was sought that links a set of input features to the phase 

transformation temperature vector. Let X be the input fea-

ture matrix with dimensions n × m, where n is the number 

of observations; m is the number of input features. Then, it 

is necessary to find a function f such that f (X) = �, where �  

is the phase transformation temperature vector with dimen-

sions r and r � n. The temperature range is (0, ��.
The prediction of the phase transformation curve was 

carried out by solving two tasks: regression and binary clas-

sification. The solution to the regression task is the phase 

transformation temperature vector: 

f r (X) = ���������������������������������������������(1)
where f r is the regressor; X is the matrix of input fea-

tures;  ��is the temperature vector, with each component cor-

responding to an observation from X.

2.2. Machine Learning Models

As regressors, both classical models (k-Nearest Neigh-

bors, Support Vector Machine) and gradient boosting with 

decision trees were used. The best accuracy when working 

with tabular data is shown by gradient boosting methods like 

CatBoost, which is based on symmetric decision trees [10] 

and LightGBM [11]. Logistic regression was used as the bi-

nary classifier.

2.3. Metrics

The accuracy of the regression task was evaluated using 

three quality metrics: Mean Absolute Error (MAE), Mean 

Squared Error (MSE) and Coefficient of Determination 

(R 2).

The MAE metric shows the mean absolute error between 

the predicted and expected temperature values:

(4)

where n is the dimension of the vectors y and t; y and t  

are vectors of predicted and expected values.

The MSE metric shows the mean squared error between 

the predicted and expected temperature values:

(5)

Fig. 1. Visualization of Regression and Classification Composition
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The R 2 metric shows the generalization ability of the 

model. The higher the value of this metric, the closer the 

predicted values are to the expected ones compared to the 

mean of all expected values:

(6)

where Var [t] is the variance of the values in vector .

For classification, both classes were considered equally 

important. Therefore, the classification metric chosen was 

the area under the ROC (Receiver Operating Characteristic) 

curve. The ROC is a set of points (FPR,TPR), where TPR  

is the True Positive Rate; FPR is the False Positive Rate:

(7)

2.4. Model Interpretation

One of the most important stages in the development of 

mathematical models is their interpretation. Interpretation 

allows us to establish how much influence each input feature 

has on the result.

For models based on decision trees, features used at the 

top of the tree affect the final prediction for a larger propor-

tion of training objects than features that appear at deeper 

levels. However, there are generalized interpretation meth-

ods, such as Permutation Feature Importance and SHAP 

[12]. This method was used in current study.

2.5. Machine Learning Pipeline

For each phase transformation, the optimal regressor 

and classifier were searched for. For ease of varying hyper-

parameters, a pipeline (a sequence of actions on the original 

data) was used. Each pipeline consisted of a preprocessing 

stage of the input feature matrix and a subsequent interac-

tion stage with the main predictor. Preprocessing included 

automatic filling of missing values and data scaling if the pre-

dictor’s performance strongly depended on data distribution  

(k-Nearest Neighbors, Support Vector Machine, linear/lo-

gistic regression).

The search for the optimal pipeline was conducted  

using a grid search for hyperparameters with cross-valida-

tion (GridSearchCV). In the case of the main predictor (re-

gressor), the pipeline’s hyperparameters included not only  

the hyperparameters of the main predictor but also the pre-

dictor itself.

2.6. Digitization and Preprocessing Method

To create the dataset, a digitization method was used, 

in which the developed program recognizes the pre-labeled 

curves (Fig. 2) and then scales the data.

The labeled diagram is converted into a pixel matrix using 

the Image.open method from the Pillow library [13], where 

each pixel is a vector with components whose values cor-

respond to RGB colors. Each phase transformation curve 

is assigned a specific color: F S : #e03131; F F  : #1971c2; 

P S : #6741d9; B F : #2f9e44; M S :  #f08c00; M F :  #0c8599.

After digitization, the data needs to be scaled. First, all 

data is mapped to a range from 0 to 1. Then, the x-axis values 

are mapped to the range [xmin , xmax], and the y-axis values  

to the range [ymin , ymax]. In this case: xmin = 0.1, xmax = 10000, 

ymin = 0, ymax = 1200. It was also considered that the horizon-

tal axis has a logarithmic scale.

2.7. Feature Engineering

The final fields of the dataset are presented in Table 2. 

In the study [14] when predicting bainite and ferrite phase 

transformations, various empirical equations were used as 

additional features. It was shown that the best results were 

obtained by adding the Chernov points and a constant value 

R MSE
Var t

2 1� �
� �

Fig. 2. Image Markup
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each decade. Each pair (Tstart CR) corresponds to a cooling 

curve, and for each such curve, the intersection points (������
with the curves of the digitized diagram are obtained.

First Chernov Point:

A1 = 742 – 29C – 14Mn + 13Si + 16Cr – 17Ni –

 – 16Mo + 45V + 36Cu         (8)                                                                           

Third Chernov Point:

A1 = 902 – 255C – 11Mn + 19Si – 5Cr – 20Ni + 

+ 13Mo + 55V          (9)  

Constant Value for the Start of Bainite Transformation:

TBstart = 630 – 45Mn – 35Si – 30Cr – 20Ni  – 

– 258Mo – 40V        (10)

3. Results and Discussion

3.1. Data Collection and Analysis

The final dataset for training and testing was formed from 

digitized CCT diagrams taken from open literature sources 

[15–21]. The statistics of the dataset are shown in Table 3.

Target features depend on each other nonlinearly; there-

fore, instead of the correlation coefficient, the Chi-square 

coefficient [22] can be used to analyze their relationships 

(Table 4).

Based on the analysis of the phik-matrixes, the following 

hypotheses can be formulated. The start temperature of the 

ferrite transformation is similarly dependent on almost all 

features except for the cooling start temperature and phos-

phorus content, which have a greater influence. The greatest 

influence on the end temperature of the ferrite transforma-

tion is exerted by the concentration of silicon and the value 

of the first Chernov point. For the start of the pearlite trans-

formation, the situation is similar to the start of the ferrite 

transformation, but manganese is the most important factor. 

Table 2. Designation, Description and Measurement Unit  
of Features

Feature
Feature  

Measurement  
Unit

Feature Description

diagram –
Unique Diagram Name  

in the Dataset

phase – Phase Transformation

CR � C / s Cooling Rate

TCR
� C Start Temperature of Cooling

Tstart
� C

Actual Start Temperature  
of Cooling

Taust
� C Austenitization Temperature

taust s Soaking Time

� %
Total Deformation at the Start 

of Cooling

� s Time at the Point

� � C Temperature at the Point

A1
� C

First Chernov Point during 
Heating

A3
� C

Third Chernov Point during 
Heating

TBSstart
� C

Constant Value for the Start  
of Bainite Transformation

C, Si, Mn, P, S, Cr, 
Ni, Cu,N, Al, Nb,  

V, Ti, Mo, B
% –

 Table 3. Features Overall Information

Feature Mean Median Minimum Maximum Standard Deviation

Tstart 867.90 850.00 770.00 1350.00 74.89

Taust 1039.09 1100.00 800.00 1350.00 132.77

taust 186.36 90.00 0.00 1200.00 244.70

� 25.04 0.00 0.00 50.00 32.99

A1 734.45 728.34 684.60 931.67 28.38

A3 857.77 867.56 744.54 895.00 30.23

TBSstart 520.14 541.58 228.77 595.16 67.03

C 0.139 0.075 0.036 0.300 0.118

Si 0.301 0.260 0.120 0.940 0.140

Mn 1.294 1.330 0.200 2.020 0.750

P 0.007 0.007 0.001 0.020 0.004

S 0.003 0.002 0.001 0.030 0.004

Cr 0.558 0.110 0.000 2.200 1.472

Ni 0.110 0.075 0.000 0.790 0.155

Cu 0.103 0.110 0.000 0.350 0.089

N 0.004 0.005 0.000 0.013 0.003

Al 0.034 0.027 0.000 0.510 0.058

Nb 0.031 0.030 0.000 0.081 0.026

V 0.021 0.001 0.000 0.260 0.039

Ti 0.009 0.005 0.000 0.037 0.010

Mo 0.083 0.004 0.000 1.040 0.162

B 0.000 0.000 0.000 0.006 0.001

for the start of the bainite transformation depending on the 

chemical composition. Adding new features that character-

ize the physical properties of the process will improve the 

accuracy of the modeling results.

To build the dataset, a set of values CR was generated 

within the range 10–1 ��CR�����4. The values are distributed 

uniformly according to a logarithmic scale, with 10 values in 
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 Table 4. Phik-matrix values of Temperature Feature for Fs

Feature
Chi-square  
coefficient

Feature
Chi-square 
coefficient

CR 0.54 S 0.29

TCR 0.53 Cr 0.18

Taust 0.39 Ni 0.32

taust 0.42 Cu 0.32

� 0.31 N 0.24

A1 0.29 Al 0.25

A3 0.27 Nb 0.35

TBSstart 0.24 V 0.27

C 0.40 Ti 0.33

Si 0.36 Mo 0.18

Mn 0.47 B 0.35

P 0.36

For the end of the bainite transformation, the dependen-

cies are similar to those for the ferrite transformation. The 

martensite transformation is characterized by dependencies 

on new introduced features, the initial state of the material 

before cooling, and carbon concentrations.

3.2. Baseline Model Results

For the baseline model, classical models were chosen for 

the regressor (k-Nearest Neighbors, Support Vector Ma-

chine, and linear regression with L2 – regularization). The 

k-Nearest Neighbors model showed the best metric values, 

which, however, were not satisfactory (mean metric value:  

MAE – 35 °С; R 2 – 0.34; ROC AUC – 0.92).

The baseline model was interpreted using the SHAP 

method (Fig. 3). The figure shows the dependence of SHAP 

values on the features (the larger the absolute value of SHAP, 

the higher the contribution of the feature to the calculation 

of the target feature; the sign of the SHAP value indicates 

whether the feature value shifts the target feature value posi-

tively or negatively).

Fig. 3. SHAP Values for FS

All transformations, except for martensite, are 

significantly dependent on the cooling rate, with higher 

cooling rates reducing the transformation temperature. 

For ferrite and bainite end transformations, an increase 

in copper concentration shifts the transformation curves 

upwards on the CCT diagram. Carbon concentration has 

a substantial impact on the end of the ferrite and the start 

of the pearlite transformations, shifting the transformation 

curves downwards on the CCT diagram as the feature value 

increases. The martensite transformation is characterized by 

dependence on initial cooling conditions (austenitization 

temperature, soaking time before cooling, preliminary 

deformation). Overall, only basic dependencies representing 

phase transformation processes were obtained by classical 

models.

3.3. Gradient Boosting Models Results and Verification

After modeling with classical models, decision tree-

based models were used: Decision Trees, LightGBM, and 

CatBoost. The LightGBM library showed the best results. 

The CatBoost library showed similar results on the training 

set, but on the validation set, metrics were up to 20 % worse, 

which may indicate a tendency to overfit even though the 

depth of the trees was limited to low values. The least accurate 

were the Decision Trees models, with an average error of 

more than 40 °С. Metric results for the LightGBM-based 

model are provided in Table 5. The most accurate results were 

achieved for the start of the martensite transformation and 

the start of the pearlite transformation. The largest errors 

were for the end of the bainite transformation (10.5 °С and 

13.1 °С) and the start of the ferrite transformation (7.1 °С 

and 9.2 °С). For the martensite transformation, a low  metric 

value with high accuracy in other cases can be observed, 

which can be explained by the shape of the transformation 

curve, which typically represents a horizontal line and is 

therefore best described by a single value (mean value). The 

hyperparameters of the LightGBM model with best metric 

values are shown in Table 6.

For LGBM model and ferrite start temperature predic-

tion the most important features are cooling rate, calculated 

A3 temperature, Si content, austenitization temperature C  

and Mn content (Fig. 4). For ferrite finish temperature it is 

 Table 5. Metrics of LightGBM Models (Regression  
  and Classification)

Transformation Sample MAE R2 ROC AUC

FS

Train 9.20 0.86 0.99

Test 15.70 0.72 0.96

FF

Train 4.81 0.75 0.99

Test 18.00 0.42 0.95

PS

Train 3.68 0.67 0.99

Test 15.66 0.65 0.94

BF

Train 13.13 0.53 0.99

Test 22.30 0.55 0.96

MS

Train 1.20 -5.01 0.99

Test 10.30 -2.20 0.80

MF

Train 4.06 -6.54 0.99

Test 17.60 -1.90 0.78
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To demonstrate the adequacy of the prediction results, 

dilatometric experiments were conducted, followed by the 

construction of CCT diagrams for samples of steels with the 

chemical compositions listed in Table 7.

The prediction accuracy on the test data and the result-

ing predicted curves are presented in Fig. 5. The most accu-

rate predictions were achieved for the start of the martensite 

transformation, while the least accurate predictions, similar 

 Table 6. Hyperparameters of LightGBM Model (FS, FF, PS, BF, MS, MF )

Hyperparameter
Hyperparameter 

Description
Hyperparameter Value

numleaves
Max number of leaves 

in one tree
15, 8, 12, 15, 15, 12

regalpha
l 1-regularization 

parameter
0.05, 0.1, 0.05, 0.05, 

0.1, 0.1

depth Value of tree depth 10, 6, 10, 6, 6, 8

 Table 7. Chemical Compositions of Steels

Element Steel_1 Steel_2 Steel_3 Steel_4

C 0.050 0.110 0.060 0.080

Si 0.240 0.380 0.220 0.190

Mn 1.800 1.560 0.680 1.630

S 0.001 0.001 0.001 0.003

P 0.012 0.006 0.006 0.011

Cr 0.060 0.050 0.140 0.010

Ni 0.300 0.020 0.100 0.010

Cu 0.240 0.040 0.150 0.010

Ti 0.020 0.018 0.011 0.012

N 0.004 0.006 0.007 0.007

Al 0.035 0.026 0.023 0.035

Nb 0.030 0.033 0.024 0.081

V 0.000 0.067 0.005 0.000

Mo 0.190 0.002 0.000 0.000

Fig. 4. LGBM model feature importances for FS

cooling rate, C and Mn content and calculated transforma-

tion temperatures. For perlite transformation most impor-

tant are similar to those for ferrite finish plus Ti, Ni content. 

For bainite transformation these are cooling rate, calculated 

transformation temperatures, Mn, Nb, C, V content. Final-

ly, for martensite transformation most important features 

are cooling rate, calculated transformation temperatures  

and C, Mo, Cr concentration. As can be seen from the de-

scription above, LGBM model got dependencies corre-

sponding to known facts from literature.

to the training set, were for the end of the bainite transfor-

mation.

For Steel_3 low content of Mn (close to the lower limit of 

Mn concentration in whole dataset) lead to an absolute error 

of about 40 °С in predicting ferrite transformation that could 

mean that it is needed more data on steels having similar 

composition. For Steel_2 the classification model for perlite 

transformation showed an error in defining cooling rates at 

which this transformation occurs. This could be because in 

training dataset the majority of steels were high strength low 

alloy steels (HSLA) that mostly don’t have perlite transfor-

mation at reasonable cooling rates.

Overall, an accuracy within 20 °С can be considered sat-

isfactory, as this level of error is unlikely to lead to significant 

deviations in the predicted phase composition of the steel 

after cooling.

4. Conclusion

1. A new model for predicting CCT diagrams based on 

regression and binary classification is presented. A dataset for 

training and testing the model was created using a program 

developed for digitizing CCT diagrams and subsequent pre-

processing of the digitized data. A pipeline used for selecting 

the optimal regression and classification models is described. 

The best predictors were found to be models based on gradi-

ent boosting (LightGBM).

2. The interpretation of the baseline models revealed that 

all transformations, except for martensite, are significantly 

dependent on the cooling rate. Carbon concentration has a 

greater impact on the end of the ferrite transformation and the 

beginning of the pearlite transformation compared to other 

factors. Martensite transformation is characterized by de-

pendence on initial cooling conditions (austenitization tem-

perature, holding time before cooling, and pre-deformation).

3. The model was verified using the results from dilato-

metric experiments on four types of steel. Analysis of the 

CCT diagram prediction results showed that all predicted 

temperature values are within the required ranges (the MAE 

metric does not exceed 20 °С). However, the R 2 metric 

showed negative values for the martensite transformation, 

which can be attributed to the nature of the transformation 

curve, typically a horizontal line that is best described by a 

single value (mean value).

Future work may include expanding the range of con-

sidered chemical elements and introducing new features, 

particularly for more accurate description of the material’s 

initial state before cooling (e.g., grain size), as well as apply-

ing deep learning models given an expanded dataset.
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