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The Earth population grows yearly and is 

going to face the lack of mineral resources very 

soon. Mineral mining will be carried out in diffi-

cult geological conditions, at great depths, and 

with drastic environmental consequences [1]. 

In Kazakhstan, the mining sector is one 

of the most advanced job-offering industries. 

For the complete extraction of mineral raw 

materials, mining activities extensively involve 

mineral deposits at great depths in difficult 

ground. Naturally, major complications are 

expected due to geomechanics and geodynam-

ics in this case. The geomechanical and geody-

namic processes entail not only catastrophic 

technical and economic consequences, but 

sometimes lead to human casualties. Induced 

earthquakes occur in Germany, USA, Poland, 

Czech Republic. In Russia, this problem is 

critical in the mines of the Upper Kama potash salt deposit and the 

Khibiny apatite nepheline massif [2, 3]. All this is a direct consequence 

of geodynamic alteration of geological environment under the impact 

of large-scale mining, which is convincingly confirmed by the results of 

long-term scientific research of the Zhezkazgan nature-and-technology 

system, which is formed by mines, concentration factories with tail-

ings and, copper smelters in Karaganda, Balkhash, Zhezkazgan and 

Satpaev. The mining infrastructure in Central Kazakhstan also exerts 

a powerful anthropogenic impact on the environment and offers com-

prehensive facilities to study a wide range of environmental problems 

[4–6].

Literature review

The geomechanical studies were carried out in individual mines and 

promoted gain of experience in this area. The mining industry dynam-

ics in Kazakhstan and in the world over the past century has led to a 

qualitatively new situation, when the ‘local’ geomechanical fields induced 

by anthropogenic activities are no longer small in comparison with the 

global geodynamic processes and tectonic activity of the Earth [7–9]. 

Consequently, it is necessary to consider mines as unique natural labo-

ratories, where it is possible to study in detail the relationship of the 

geomechanical and geodynamic processes using geophysical and satellite 

geodetic methods [10, 11].
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One of such deposits in Central Kazakhstan is a giant copper ore

province Saryoba, (East and West sites) located in the Ulytau area

30–35 km north of the Zhezkazgan Mine. The deposit was discovered

in 1938–1940, and the first geological exploration headed by K. I.

Satpayev revealed 11 ore deposits including 109 proved ore bodies.

The ore bodies contained many faults which greatly hindered develop-

ment.

Reliable information about structural features and deformations

of rocks can only be obtained using innovative methods and means

(high-precision strain gauges) for recording of stresses and strains,

and using modern GIS technologies that enable 3D geological model-

ing and optimization of mining of structurally complex ore bodies. This

problem is of particular relevance for hard-to-recover deep-seated

objects [12, 13].

Monitoring of geomechanical and geodynamic changes of rock mass 

is currently carried out by various agencies using different methods and 

at different accuracy, which makes the comparison of monitoring data, 

their generalization and use practically impossible. It is necessary to 

elaborate special geomonitoring of induced geo-processes using the gen-

eralized deformation monitoring methods, reference point measurement 

of rock displacements, GPS technologies, as well as assessment tech-

niques of stresses and groundwater flow. Such geomonitoring should

be all-inclusive and inter-disciplinary to embrace and analyze very many

different data using IT. 

The technical level of traditional geodetic observations in geome-

chanical monitoring not always meets the requirements of mines as

the work takes much time and it is impossible to obtain necessary

and real-time information on deformation of rock mass. Therefore, we

believe that use of modern geodetic instruments (electronic tache-

ometers, GPS technologies and laser scanners) in geomonitoring and

the improvement of geodetic survey is closely related with innovation

[14]. This confirms the importance of geomechanical geomonitoring

procedure perfection using modern geodetic instruments as the basis

of effective solution to the set problem of science and technology.

Modern methods of geomechanical monitoring in open pit mines

are highly varied. Laser scanning, electric tacheometers and GPS tech-

nologies are the most common equipment in 

safety monitoring in pen pit mines [15, 16].

Methodology

The methodological analysis of geo-

detic observations with a mine field suf-

fers from the lack of effective ways to 

determine deformation values, which 

calls for improvement of methodology of 

geodetic observations over deformations 

in rocks using modern facilities. Geodetic 

observations reveal deformations in rock 

mass, which is essential for assessing the 

geomechanical situation in the field devel-

opment area. Figure 1 describes a proce-

dure proposed for the rock mass behavior 

monitoring. 

This procedure allows defining, for-

mulating and validating the goal, idea and 

structure of the integrated geo-monitoring 

in Central Kazakhstan [17–19].

Results and discussion

According to block 1 of the recommended procedure (Fig. 1), the

geological and geotechnical conditions of giant copper deposit Saryoba 

located in Central Kazakhstan are carfully studied. 

According to block 2 of the procedure, the structural features are

inspected on rock exposures, and physical and mechanical properties 

(PMP) of rocks are tested on core samples from geological exploration 

wells. The analysis of the PMP test data allows the graph-analytical cor-

relation of the rock strength and occurrence depth and prompt updating 

of layer-by-layer calculations of pitwall slope stability (Fig. 2).

The curves of the rock properties are plotted by the averaged indica-

tors by depth at a step of 50 m. Reliability of the curves is evaluated using

Fig. 1. Integrated geomonitoring procedure architecture 

Scientific basis development for measures to predict signs of occurrence

of strong deformation processes at an early stage of their development

to assess occurrence of anomalous geodynamic phenomena and their industrial 

and environmental consequence
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Fig. 2. Strength properties versus occurrence depth occurrences H for massive limestone: 

(a) density a γ; (b) internal friction anglebb ρ; (c) cohesion k; (c d) rock hardness fdd
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formulas of mathematical statistics. The deviation of the calculated

and empirical relations fluctuates in within 5–8%, and the curves

mostly coincide. The data analysis also shows that the strength prop-

erties of rocks noticeably changes with depth [20, 21].

The similar dependencies were also obtained for a number of 

fields in Kazakhstan, namely, the fields of Akzhal, Akbakai, Sayak 

etc. To find general variability patterns of rock mass strength and 

structure, data on a number of deposits are generalized and the

graphic-analytical relationships between the average density, cohe-

sion, compression, strength of rocks and their depth are obtained. 

The depth intervals for averaging the strength data for plotting was 

Fig. 3. Properties of rocks versus rock occurrence depth:

1—Saryoba deposit; 2—Akzhal deposit,2 3—Sayak deposit,3 4—Akbakai deposit44
(σco—compressive strength of rocks, MPa; K—cohesion, MPa; f—rock 
hardness; γ—density) 
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5 m. To compare the preset test results with the data from other mines

[22–24], the integrated graph of relationship of rock properties was 

plotted (Fig. 3). 

To date, various methods and techniques are available for the stress–

strain monitoring in rock mass, including VNIMI’s method of stress relax-

ation, core disking, etc. The present authors have developed the acoustic

method of the stress–strain prediction in rock mass [25]. In this method,

sensors are installed in rock mass to receive noise from natural sources in

rock mass and to determine parameters of these signals later on. 

According to block 3 of the procedure, the monitoring of a vast area 

of the giant copper deposit composed of a few ore bodies at various

depths requires high-precision geodetic justification. 

In the ore province of Saryoba, 11 ore deposits are identified, 

including 109 proved ore bodies. Moreover, the Saryoba province con-

tains pre-mineral and post-mineral disjunctives which greatly complicate 

detailed exploration and mining (Fig. 4).

The traditional geodetic networking over a vast area of a mine field

takes much labor and money. The authors propose to replace long level-

ing lines with local geodetic imaging in the form of geodynamic profiles, 

profile lines and control clusters of geodetic and leveling points. The inte-

grated application of the ground and space geodetic methods will make 

it possible to cover the entire mine field area with monitoring observa-

tions, as well as to increase efficiency of observations and to reduce a 

large area and designed for deep seams, the authors suggest covering a 

mine field with chief branches of base (reference), support (initial) and 

check points of ground control and leveling [26, 21].

All key points are located in accordance with the layout of ore veins

(see Fig. 4) and are tied to the points of the State Geodetic Network 

(Fig. 5).

Instrumental observations showed complexity of the field work,

especially transferal of the equipment (the tool, tripod, rails, etc.) from

one point to another. In this regard, in order to speed up the installation 

and measurement operations, the permanent forced centering points

(FCP) have been developed to be set at the reference point during geo-

mechanical monitoring. The FCP belongs to the geodetic centers for new 

instruments and signals [26].

Purpose of this invention is to improve accuracy of centering and 

to enhance efficiency of measurement at observation points unequipped

with tripods. The new device allows fast and accurate centering, and 

also eliminates using tripods. 

The plane coordinates and the preliminary heights of these points

were determined by the satellite method using Leica GS16 3.75G geo-

detic satellite receiver. The final heights of the points were determined 

by class II geometric leveling method using Trimble Dini03 digital level and

barcode rails (Fig. 6).

Upon completion of field satellite measurements, the data were

converted in office conditions into the universal Rinex exchange format.

The office post-processing of the data was performed in Giodis software

from Javad GNSS. Giodis is a program for high-precision geodetic pro-

cessing of GNSS-measurements. To obtain the accurate coordinates and

heights, the post-processing included initial data points of the global IGS

network. This network is a permanent basis of the data processing and

adjustment. Linking our pints to the above network provides high accu-

racy and consistency of the obtained coordinates and heights with the 

ITRF2008 world coordinate base and the WGS84 coordinate system. To 

improve accuracy of the final results, before processing, the project was

Fig. 5. Layout of observational network within geodynamic test ground

Fig. 6. Monitoring by GPS receivers and electronic tacheometers

installed at permanent forced centering pointsBasic (reference) point

Reference leveling station equipped with wells

Control leveling point equipped with wells
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Bush of basic (reference) point

Direction to SGN points
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Table 1. Satellite measurement processing results 

ITRF2008 WGS84 UTM 42N

Point X, m Y, m Z, m B L h, m X Y h, m

RP02 1632200.5571 3937264.7502 4729578.8152 48°10'01.00481''N 067°29'00.44123''E 404.6638 5335967.857 387239.534 404.664

RP03 1632741.9030 3937565.5219 4729137.8417 48°09'39.78017''N 067°28'41.81649''E 399.7218 5335320.178 386841.903 399.722

RP04 1633280.7021 3937890.2852 4728683.2077 48°09'17.74768''N 067°28'23.75454''E 398.8271 5334647.385 386455.317 398.827

RP05 1632111.4814 3937723.5393 4729218.9788 48°09'43.83469''N 067°29'12.92478''E 396.4978 5335432.674 387486.927 396.498

RP06 1633215.0023 3937251.3304 4729235.7251 48°09'44.52246''N 067°29'14.84566''E 399.9548 5335477.642 386287.716 399.955

RP01 1632921.1178 3937041.9195 4729532.5184 48°09'58.31277''N 067°29'24.09944''E 416.9637 5335899.6 386487.308 416.964

RP02.10 1632391.6424 3937148.8425 4729615.0502 48°10'02.60468''N 067°28'49.75059''E 409.0589 5336021.61 387019.714 409.059

RP05.10 1632288.9604 3937600.6683 4729268.3701 48°09'45.99982''N 067°29'02.71440''E 402.9158 5335503.674 387277.348 402.916

added with the data of accurate satellite ephemeris, ionospheric charts, 

condition cards troposphere and updated satellite hours for the period 

of field work (Table 1).

The use of these data in post-processing made it possible to elim-

inate the main sources of errors that occur when performing satel-

lite measurements, and to increase accuracy of the final results, i.e. 

the plane coordinates and heights of the test points. Position of initial 

benchmarks in the created observation system is determined by linear–

angular point position fixing on the reference mine surveying geodetic 

network. Guided by the high-precision satellite measurements, the pro-

file lines were drawn and the geodetic measurements carried out at the 

main geodetic points using the TS15 Plus tacheometer [27].

In this manner, the integrated geodetic measurements were imple-

mented in the Saryoba field, namely, coordination of 6 GFCPs using GPS 

technologies. Satellite observations were implemented using modern 

geodetic instruments GS16, in static mode, and the network method. 

All in all, 4 observation sessions were performed on 6 GFCPs, and dura-

tion of a session was 4–6 hours. Displacements were revealed from 

the in-situ instrumental observations along profile lines of 6 GFCPs by 

the method of trigonometric levelling: the tool was positioned and the 

datum point was assumed as the point of the GFCP shoe. Two season 

observation data were used to compare the initial and second observa-

tion cycles (Table 2). The comparison revealed the difference of heights 

in profile lines 1 2 and 5 of FCP, which enabled detecting the sites of 

displacements on ground surface at the Saryoba deposit. 

Conclusions

The database of geospatial data on ore deposits in Central Kazakh-

stan was created. The strength properties, structural features and the 

stress–strain behavior of rock mass on the lower levels of the test mine 

were studied to create three-dimensional models of geological objects 

with regard to their changes in the process of subsoil development. 

The modern approach to setting up and performing observations

of geodynamic and geomechanical processes during development of 

ore deposits was analyzed, the geodynamic test ground (GTG) was 

created, consisting of 6 permanent reference ground points of forced 

centering and 72 deformation benchmarks, and the reliable framework 

was formed for organizing long-term monitoring of slow deformation 

processes of the earth’s surface during large-scale ore mining in Cen-

tral Kazakhstan. 

The permanent ground point of forced centering is designed to 

improve productivity and accuracy of observations. The zero and sec-

ond cycles of monitoring of the Earth’s surface using the GS16 GPS 

device were accomplished, and a catalog of coordinates of the points and 

benchmarks within GTG was compiled. 
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Table 2. Static GNSS measurement results 

Temporary 

benchmarks

Adjusted coordinates by the method of static

measurements, first session, August 2021

Adjusted coordinates by the method of static 

measurements, second session, May 2022
Difference, m

E (Easting) N (Northing) H (Reduced height) E (Easting) N (Northing) H (Reduced height) dE dN dH

RP01 388487.308 5338999.600 416.964 386487.317 5335899.609 416.960 0.009 0.009 –0.004

RP02 387239.534 5335967.857 404.664 387239.541 5335967.868 ref.coordinates 0.007 0.011 –

RP03 388841.903 5335320.178 399.722 reference coordinates 399.711 – – –0.011

RP04 388455.317 5334647.385 398.827 386455.324 5334647.395 398.825 0.007 0.010 –0.002

RP05 387486.927 5335432.674 396.498 387486.936 5335432.684 396.494 0.009 0.010 –0.004

RP06 386287.716 5335477.642 399.955 386287.728 5335477.651 399.958 0.012 0.009 0.003

Notes: RP3 coordinates and RP2 elevations were used for adjustment

Measurement method : Static measurements

Coordinate system : Coordinate system WGS-84 UTM Zone 42

Elevation Datum : Height system Baltic 1977

All dimensions are in meters
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