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Introduction

The current designs of the milling equipment 

fail to enable fine milling and simultaneous sizing

of mineral raw material at minimum energy inputs.

The reason of that is the impossibility of oriented 

effects to be exerted by grinding bodies on differ-

ent size particles of a material being milled [1–7].

The authors propose a new method of milling

and a new design of a vibration mill screen with

oriented vibrations of a curved acting face. As a

result, the grinding balls of different diameters 

exert the oriented effects on the particles being

milled [8–11].

The curved acting faces have proved to be 

effective separating tools in various mining and processing processes.

Such faces are simple and reliable in manufacture and operation. Such 

faces are for instance the AURY curved vibrating screens operated in 

separation of magnetite from products of processing and desliming [12, 

13]. However, there is yet no information about using these screens in 

simultaneous milling and sizing. 

The key objective of this research is the mechanics of movement

of a mill feed represented by balls of different diameters and to-be-

milled particles of different sizes bottom up a curved acting face

because of effect of oriented vibrations. The scope of the research

also encompasses determination of such ratio of the design variables

and operating conditions of a vibration mill screen that large grinding

bodies mill large particles at the bottom of the grinding chamber and

small grinding bodies treat small particles at the top of the grinding

chamber. In this case, the milling process includes size grading of both

the grinding bodies (balls) and ground material. To this effect, it is

required to ensure displacement of the balls from the bottom of the

grinding chamber together with the mill material to various heights

upward the curved acting face. As a result, it is possible to improve

the milling quality and to eliminate the nonproductive loss of energy in

interaction of balls and particles of different sizes. One more task of

the research is the experimental optimization of operating conditions

of the vibration mill screen. 

Research methods and materials 

The study of the dynamics of a grinding body in a material layer

examines displacement of a ball upward a material layer over a curved 

surface. The slopes of the tangents to the surface change as it goes up, 

from 0° to a vibration angle β along the whole surface length selected 

from a condition that balls lie on the surface in single layer (Fig. 1). A ball 

with a diameter d and a mass d m, in the layer of a material on the curved

acting face of a vibrating machine, experiences the gravity force Fg, the 

friction force Ff, the normal force Fn and the inertia forcen Fi.

The differential equations of movement of a grinding body relative

the axes x, y in a layer of a material as a function of the time y t along at

curved acting face are given by: 

(1)

where β is the vibration angle; А and А ω are, respectively, the amplitude 

and frequency of the acting face vibrations; m is the mass of a grindingm

body; g is the acceleration of gravity;g δ is the movement resistance of

the ball, dependent on the size and shape of the particles, and on their
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Fig. 1. Grinding body (ball) in material layer on curved surface which

carries out oriented harmonic vibrations
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mechanical properties; α is the slope of the curved acting face tangents 

to horizon at the point of contact with the ball. 

Assuming the ball to move under the action of the oriented vibra-

tions in the mass of the mill feed along the vibrating surface in the no-

detachment mode, and considering that Ff =f fFn, where f is the frictionf

factor as an averaged indicator of properties of the mill mix between the 

ball and the acting face, the normal force Fn applied by the acting face onn

the milled body is written as follows: 

. (2)

After some trigonometric transformations, the differential equation 

of movement of a particle in the layer of a material is written as: 

. (3)

The analysis of this differential equation shows that the height of 

the different size balls going up the curved surface under the action of 

the oriented vibrations depends on the maximal acting face acceleration 

magnitude АωАА 2, the curved screen tangent slope α, the vibration angle 

β and the ball movement resistance δ [14–16].

Figure 2 describes the height of the grinding balls of various size 

in a mill material layer as function of the angle of the acting face. The 

studies included different friction factors between the material and the 

acting face at the selected parameters of the face vibration. The fric-

tion factors in Fig. 2 are borrowed from the Table of Friction Factors for 

Nonuniform Materials (Context Help GEO5).

It follows from the curves that at a certain height, a ball goes to a 

new quasi-equilibrium state, and that the different diameter and mass 

balls have different limit heights on the curved acting face of the screen. 

In the steady-state operation of the vibration screen, the balls col-

lide with the particles of the similar sizes while remaining at the achieved 

height. As a result, the process of milling takes no extra energy. 

The curves of the upward velocity of the mill feed on the curved 

screening surface versus the amplitude of vibration at different vibra-

tion angles β show that the increase in the amplitude in the general 

case leads to the increase in the mill feed velocity. At the small (under 

25°) and large (to 50°) angles β, a noticeable increase in the velocity 

of the balls is only observed at the amplitudes higher than 0.75 mm; at 

β = 37.5° the ball velocity markedly increases already at the amplitude 

of 0.5–0.7 mm. The literature recommends the vibration amplitudes to 

be not more than 0.5–0.8 mm for the vibration transportation [15]; 

thus, to stimulate the movement velocity and distribution of the balls on 

the acting face, β should range as 35–40° [17–20].

Figure 3 depicts the movement velocity v of the mill feed as function 

of the acting face vibration frequency ω for the grinding balls of different 

diameters at the vibration amplitude А = 0.7 mm and vibration angleА

β = 37.5°.

Results 

The analysis of the obtained relationships shows that in the range of 

frequencies from 49 to 51 Hz, the rate of the vibro-distribution of the 

mill feed reaches maximum values. At the increasing frequency over 51 

Hz, the velocity of the balls of different diameters lowers. Apparently, 

this is connected with the reduction in the total density (adhesion) of 

the balls and particles. 

From the research evidence, it follows that the most efficient dis-

tribution of the mill balls in the layer of a material being milled on the 

curved surface requires that the curved acting face abides the following 

ranges of the process parameters: vibration angle β = 35–40°; vibra-

tion frequency ω = 49–51 Hz; vibration amplitude А = 0.6–0.8 mm.А

The checkout of the theoretical relationships was carried out on a 

bench tester (Fig. 4).

The material to be milled was rock salt to 10 mm in size. During 

the tests, the varied parameters were the vibration amplitude and fre-

quency of the acting face; the set of the grinding bodies; the size of the 

mill feed. The acting face of the bench tester was the curved perforated 

metal sheet. The shape of the curve was conditioned by the requirement 

of single-layer arrangement of different size balls on the acting face. 

The response function was selected to be the milling–screening effi-

ciency Е, % [21] calculated from the outcome of the milling and further 

screening of a preset material sample through the holes on the acting 

surface within a preset time. 

For the test data reliability estimation, the theoretical and experi-

mental dependences of E on the vibrating machine parameters of the 

acting face vibration amplitude А and frequency ω were compared 

(Fig. 5).

The experimental curves plotted from the test data demonstrate 

that the maximal efficiency of milling is achieved at the vibrating face

Fig. 2. Travel length x of grinding ball material layer versus curved 

acting face tangent slope α and friction factor f at constant A, β, ω

Fig. 3. Movement velocity v of grinding balls on curved acting face 

versus vibration frequency ω of curved acting face for different 

diameter balls at constant β and А
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amplitude in the range of 0.6–0.8 mm and frequency in the range of 

48–54 Hz, and is 8–12% higher than at the values beyond these ranges

of amplitudes and frequencies. This proves the theoretical results. 

Conclusions

1. One of the promising machines for the fine mineral milling is the 

vibration mill equipped with an acting face capable of oriented vibrations 

which ensure the oriented effect to be exerted by the grinding balls

of different sizes on the mineral particles to be milled. Moreover, this 

machine is simple and reliable. 

2. The travel velocity of the grinding bodies (balls) of different diam-

eters in the layer of particles on the curved surface depends on the sur-

face vibration frequency ω and reaches maximum values in the frequency

range from 49 to 51 Hz. 

3. The height of the different size balls on the curved surface under 

the oriented vibrations depends on the maximum acting face accelera-

tion magnitude АωАА 2, the acting face slope α, the vibration angle β and 

the ball movement resistance δ.

4. For the distribution of the grinding balls in the milled material 

layer on the curved acting face to be most effective, it is required to

abide to the following ranges of the process variables of the acting face:

vibration angle β = 35–40°; vibration frequency ω = 49–51 Hz; vibra-

tion amplitude А = 0.6–0.8 mm.А
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Fig. 4. Mill screen 

bench tester:

a—physical configuration;aa
b—3D modelb

Fig. 5. Theoretical (solid) and experimental (dashed) curves of 

milling-and-screening efficiency and vibrating machine parameters 
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Introduction

Belts are the common conveying equipment in 

mines. The high conveying capacity, long haulage and 

relatively simply maintenance makes this equipment 

highly popular in underground mining [1]. 

Alongside with the apparent advantages, the 

operation of conveyor belts includes complex fire 

safety control [2, 3]. The main cause of fire in long 

regions of belt conveyors is the seizure of rollers and 

the friction between the roller shell and the loaded 

belt [4, 5]. The friction involves heating of the roller 

surface and heat emission, which can initiate inflam-

mation of substances having the least burning point, 

for instance, coal dust [6]. 

Conveyor lines can be tens kilometers long, and the length of one 

conveyor can exceed one kilometer. The prompt detection of faults is 

difficult without special facilities [7, 8] as it is necessary to inspect each 

roller in the conveyor line, and the number of the rollers may exceed six 

thousand [9, 10]. The automated fire extinguishment systems are only 

provided at the power-drive and tension stations of conveyors and are 

absent along the conveyor flight. 

A belt conveyor fire is an exogenous fire controllable using ven-

tilation. Fire begins as inflammation initiated in off-normal mode of 

a conveyor, and has ultra early, early, developmental, mature and 

attenuated stages which differ by the ambient temperature. The 

ultra early and early fire detection enables early localization and 

elimination of an accident, without work interruption and any severe 

financial loss. The signs of an early fire can be the CO concentration 
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