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Introduction

Utilization of red mud (RM) is of strategic impor-

tance at a scale of a country. A promising trend in this 

regard is processing of RM with extraction of useful 

components (alumina) from it [1–3].

In the wasteless technology of RM processing, pro-

duction of pellets is of particular interest. There is no 

experience of pellet production from red mud, and the 

earlier research [4–6] considered RM as a binder in pel-

letizing of iron ore concentrates and as an intensifier in 

agglomeration. As a binder in pelletizing, RM success-

fully replaces expensive bentonite [7–9]. A sample of RM 

with the iron content to 46% and silica content to 10% 

was obtained at the Boksitogorsk alumina plant [10–12]. 

It is known that the increase of the iron content 

in the furnace feed by 1% allows the increment in iron 

ma king by 2.5% at the coke saving by 1%. In this context, 

the use of the alumina production waste as the feed in 

iron making validates the relevance of this study [13–15]. 

The quality of a metallurgical conversion product 

depends on the quantity of elements in composition of RM. 

The properties of an end product depend on the impact 

of such elements as aluminum, silicon, calcium, sodium and 

titanium [16–18]. 

The main objective of this study is usability of iron frac-

tion of RM in integrated processing of waste without extra 

expenses connected with separation of other elements 

contained in RM and resisting extraction. 

This study aims to investigate the behavior of RM in 

agglomeration with Ca/Si ratio control. Later on, RM can be 

used as a binder in production of iron ore pellets in view of the fact that RM 

contains up to 50% of iron oxide while the material is considered as waste. 

Procedure and materials 

RM pelletizing was carried out in a dish pelletizer with a diameter of 30 

cm and a side height of 10 cm in rotation at a speed of 30 min–1. Before pel-

letizing, RM was pre-wetted to 10%. The main physicochemical properties 

of RM are [19–21]:

Bulk weight 1.15–1.21 t/m3;

Specific density 2.02–2.68 g/cm3;

Total moisture retention capacity 29.50–30.90%;

Specific surface 158.36–160.54 cm2/g.

Preliminary baking of wet RM pellets was carried out in lab-scale tubular 

kiln PT-1.3-20 to examine the process of agglomeration in uniform heating. 

A sample was an individually lying RM pellet in a ceramic boat. The sample 

10–15 mm in size was placed in a tube with a diameter of 300 mm and 1 m 

long. Then, the tube with the sample was moved through the reaction zone 

of the kiln at a rate from 5 to 20 cm/min. 

Baking was performed in the oxidizing atmosphere by means of feeding 

natural gas and oxygen mixture at a ratio of 1 : 1.6 in the reaction cell [22–

24]. The air–gas mixture flow rate was the same in all tests and equaled 

2.5 l/min. 

The test sample of RM from the Ural alumina plant had a weight of 

25 kg. The main components and physical characteristics of the test RM 

material are described in Table 1. 

The qualitative analysis of baked pellets followed a standard flowsheet 

with the determination of chemical composition, compression strength 

and reduction strength of pellets as per state standard GOST 19575–84 

[25–27]. 

On the whole, the data on the physical properties of the test material 

offer grounds for suggesting a high pelletizing capacity of RM, and high dis-

persiveness and water retention capacity come into notice [28, 29].

Research findings 

The research findings show that during pelletizing of RM (pre-wetted 

to 16.5–17.0%), germs rapidly originate at first and grow to 5–8 mm as 

the feed material is being added. However, the further growth of the pel-

lets of RM to 12–15 mm proceeds very slowly, and the fed material vividly 

balls with formation of new germs. An increase in the moisture content by 
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Table 1. Physicochemical characteristics of RM 

Chemical composition, % Content  

of sizeа  

<0.50 mm, %

Specific 

density,  

g/cm3

Specific 

surface, 

cm2/g

Total water 

retention  

capacity, %

Bulk 

weight, 

t/m3

Al2O3 Fetotal FeO CaO SiO2 LoI

12.90 46.75 6.57 12.58 9.58 12.10 89.63 2.35 159.22 30.40 1.18

Note: LoI — loss on ignition.
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8–9% results in agglomeration of pellets with formation 

of aggregates. 

Considering different chemical composition and, 

accordingly, different basicity of red muds from diffe-

rent plants [30–32], the strength of pellets made of 

RM with different basicities was tested. The pellets with 

different basicities, manufactured at the moisture con-

tent of 16.5–17.0%, demonstrated the higher cru shing 

resistance and plasticity. The pelletizing results are com-

piled in Table 2.

For the pellets made of RM having different basi-

city, the compression strength of wet unbaked pellets 

reaches 3–5 kg per pellet [33–35]. Baking was car-

ried out at a temperature of 1240–1300 °C. The baking 

temperature–strength relationship of RM pellets having 

different basicity is depicted in Fig. 1.

Basicity of RM pellets was adjusted by addition of 

calcium oxide, by gradually increasing the content of the 

active additive with formation of two calcium silicate 

which strengthened the product. Aside from that, par-

tial surface melting and adhesion of pellets to each other 

was observed. 

Preliminary backing of RM pellets was carried out in 

a lab tubular kiln in a temperature range of 1000–1400 

°C and in different regimes of heating. The velocity of the 

tube pushing a test sample across the reaction zone was 

5, 10 and 20 mm/min. The test pellets had the basicity 

of 1.8, 2.0, 2.5 and 3.0.

The obtained results correlate with the data on the 

temperature of fluxing and melting onset in the samples 

of the same composition (Fig. 2).

The analysis of the results gives a provisional opti-

mal temperature range for baking of pellets as 1180–

1250 °C.

It is found that for the pellets made of RM having 

the test basicity values, the increase in the displace-

ment velocity of the reducible layer at a temperature 

of 1180–1200 °C to 20 mm/min leads to the decrease 

in strength, and sensitivity of the pellets to the regime 

of heating grows with the decrease in basicity (Fig. 3).

The preliminary results were used in selecting the 

main temperature and time parameters for baking RM 

pellets. 

The technological peculiarities of RM pellets 

described below were also taken into account: 

 — high moisture content of wet pellets (16.5–

17.0%) and low thermal resistance before the first 

signs of agglomeration (350 °C for basicity of 3.0 and 

500 °C for basicity of 2.0); 

 — higher sensitivity of pellets to change in the rate 

of heating in case of basicity of 2.0;

 — low temperature range of fluxing and surface 

melting of pellets. 

The research shows that baked pellets made of 

RM in the lab tubular kiln have a high strength (120– 

140 kg/pellets). The research results are described in 

Table 3.

It is planned to continue the studies on a semi-

industrial installation of baking a layer of RM pellets to analyze their mutual 

adhesion which complicates haulage and stockpiling. The baking plant may be 

equipped with a lined cell with a diameter of 300 mm and 400 mm high, and 

with three burners for a mixture of natural gas and air. By estimates, the 

air–gas mixture flow rate can be no higher than 1.4–1.6 m3/s.

The main technological parameters of the layer baking from the accom-

plished test results are compiled in Table 4.

The furnace cell has nozzles for adjustable air feed. The gaseous fuel 

may be a mixture of oxygen and natural gas with a calorific capacity of 

8000 kcal/m3, fed via the nozzles under a pressure to 3 atm (0.3 MPa). 

Table 2. Pelletizing of RM with different degree of fluxing 

Mixture composition Moisture 

content, % 

Compression strength, kg/

pellet 
Drops from height 

of 0.5 m without 

failure RM, % Limestone, % CaO/SiO2 Wet Dry

100 0.0 1.8 17.0 4.1 16.5

50
87.6 12.4 2.0 16.8 2.9 14.2

82.2 17.8 2.5 16.6 3.9 15.3

77.5 22.5 3.0 16.5 2.58 18.5
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Fig. 1. Temperature dependence of strength of baked RM pellets having different basicity 
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Fig. 2. Contraction versus baking temperature of pellets made of RM having different basicity 
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The temperature in the combustion space is adjusted by changing the 

gas–air ratio. 

The tests use small samples with a weight of 1.5–1.8 kg. Wet pellets 

made of RM are placed in a perforated refractory-steel glass with a diam-

eter of 14 cm and 25 cm high. The glass with the test pellets is set inside 

the furnace, on a fill bed 10 cm high made of baked pellets. The unoccupied 

place between the glass and the lined cell walls is filled with baked pellets 

of the same size. The layout of the semi-industrial plant is shown in Fig. 4.

Conclusion

1. It is found that at an early stage of RM pelletizing, fast formation of 

agglomerates 5–8 mm in size takes place. 

2. It is experimentally proved that the optimal moisture content of RM 

mixture is 16.5–17.0%. 

3. The uniaxial compression strength of wet RM pellets reach 4–6 kg, 

and their plasticity increases. 

4. The temperature of fluxing and surface melting of RM samples, when 

total removal of sodium sulfides from the product occurs, is 1180–1250 °C. 

5. It is found that the increase in the sample displacement velocity over 

20 mm/min for RM pellets with the basicity from 1.8 to 3.0 leads to the 

increase in the adhesion of pellets to each other. 

6. The temperature of the first signs of aggregation in wet pellets made 

of RM having a high moisture content (16.5–17.0%) is 350 °C for the 

basicity of 3.0 and 500 °C for the basicity of 2.0.

7. Drying of RM pellets is recommended to carry out at a heating rate 

to 5 °C/min, which allows removal of moisture and prevention of adhesion. 

Table 3. Quality factors of RM pellets after baking and reduction 

Factor 
Basicity 

1.8 2 2.5 3

Specific capacity, t/(m2·h) 0.56 0.53 0.53 0.5

Content, %:

Fe

FeO

Al2O3

CaO

SiO2

40.66

9.98

19.60

19.12

10.62

41.10

10.09

19.82

19.33

9.66

41.91

10.29

20.21

19.71

7.88

42.46

10.43

20.48

19.97

6.66

Compression strength, kg/pellet 4 6 8 7

Pellets after reduction, %:

>10

0.5–5 

<0.5

82.9

2.6

2.2

83.8

1

0.8

87.7

0.5

1.2

87.4

0.6

1

Rupture factor, % 1.17 1.04 1.00 1.08

Compression strength, kg/pellet 120 135 140 130

Table 4. Main parameters of layer baking of RN pellets in layer of 150 mm 

Process, min/°C
Basicity 

2 2.5–3.0

Drying 7.5/340 10.0/250

Heating 4.0/800–1000 4.0/800–1150

Baking 6.0/800–1000 8.0/1150–1180

Recuperation 2.5/900 2.5/900

Cooling 11.0/20 11.0/20

 1    2     3      4     5      6     7      8                             9         10        11       12       13        14       15 

Fig. 4. Layout of semi-industrial plant: 

1 — oxygen container; 2 — exit gas outlet; 3, 4 — gas–air mix feed adjuster to ensure depression cell temperature of 300–500 °C; 5 — furnace; 6 — furnace cover; 7 — small-
size sample baking glass; 8 — automated door to organize air flow; 9 — gas–air mix feed adjuster to ensure depression cell temperature of 1000–1400 °C; 10 — fill material for 
unoccupied space in cell; 11 — grille pan; 12 — gas receiver; 13 — fan to maintain low pressure; 14 — pump to feed natural gas at pressure of 6 atm (0.6 MPa), series BD-07A 
DC12V; 15 — control cabinet 
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8. For all pellets made of RM with the basicity from 1.8 toо 3.0, a typi-

cal range of the fluxing and surface melting temperature is from 1180 to 

1250 °C.

9. The test results show that baked pellets made of red mud have a high 

strength (120–140 kg/pellet).
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