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SPATIAL DISTRIBUTION OF BLAST-TRIGGERED  

SEISMIC EVENTS: A CASE-STUDY OF THE KHIBINY MASSIF 

Introduction

This study continues the research of the authors in the field 

of time–space patterns of seismic activity in the regions of min-

eral mining. It is already demonstrated that the number of seismic 

events triggered by blasting (seismic productivity of blasts) obeys 

an exponential distribution [1]. It is also found that under condi-

tions of the induced seismicity in the Khibiny Massif, the distances 

between the seismic events and induced bumps comply with a 

power-series distribution [2]. A similar result was earlier obtained 

by the American scientists for the natural seismicity in California 

[3]. Using the combination of the earthquake productivity law 

[4], proved for the conditions of the induced seismicity in the 
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Khibiny [5], and the power-series distribution of distances [2], the dis-

tribution of maximal distances between the triggering seismic events and 

the induced bumps was derived. This study analyzes features of the spatial 

distribution of seismic events triggered by blasting at the mineral deposits 

of the Khibiny Massif. 

The Khibiny Massif in the west of the Kola Peninsula is the largest 

alkaline intrusion in the world. The southwestern area of the Massif com-

prises large apatite–nepheline deposits (Kukisvumchorr, Yuksporr, Apatite 

Circus and Rasvumchorr Plateau). They have been developed by Kirovsk 

Branch of Apatit for more than 80 years and representing different parts 

of the same apatite–nepheline body [6]. The depth of the deposits reaches 

1.5 km, and the thickness is 0.5 km. Alongside with the high tectonic 

stresses of up to 40–60 MPa at the depth of 0.2–0.6 km below ground 

surface, which sometimes exceed the gravitational stresses by an order of 

magnitude [7], the Massif contains numerous faults, some of them inter-

secting the deposits [8]. The recent uplifting events at a rate from 0.5 to 

2–4 mm per year in the Khibiny Massif, as well as the periodic earthquakes 

[9] reflect of the modern tectonic evolution in the region. Seismicity in the 

Khibiny is a result of the joint influence of tectonics and mining activity. 

The impact of blasting on the energy of seismic events is comprehen-

sively considered in the studies [10–12]. Blasts violate the local stress 

field near a hypocenter and generate stress concentrate zones, which 

leads to brittle fracture of rock mass (induced seismicity). Although blast-

ing-induced seismic events are small as compared to the natural seismicity 

[12], they can endanger mining operations [13, 14]. 

After blasting, in a certain neighborhood of a blast, a short-term 

increase in the seismic activity is often observed (post-blasting seismic-

ity), similarly to the main shock–aftershock pattern, a blast plays the part 

of the main shock or trigger [10, 15, 16]. For estimating this neighbor-

hood, it is required to understand how the post-blast seismicity attenu-

ates with the distance from the trigger blast. This can enable estimating 

future post-blast seismicity region at the blasting design stage, and making 

provisions to ensure safety of personnel and machinery. This is the subject 

of this paper. 

The tasks solved in this study include: 1) the analysis of distribu-

tion of distances from trigger blast to seismic events triggered by them; 

2) determination of the maximal distance distribution based on the law of 

seismic productivity of blasts; 3) the modeling of the post-blasting seis-

micity with practical guidelines on the model application in the conditions of 

induced seismicity in the Khibiny Massif. The proposed model allows sizing 

up a zone of expected triggerd events at a preset accuracy. We emphasize 

that this result is critical for the mining safety. 

Initial data and identification of triggered events 

As in [1], this study used the catalog of seismic events recorded by 

the seismic monitoring network of Kirovsk Branch of Apatit [17] from 

1996 to 2020, Nowadays the network contains 65 three-component seis-

mic sensors with the sampling frequency of 1000 Hz arranged in Kirovsky 

and Rasvumchorr Mines. Monitoring enables positioning of hypocenters of 

seismic events having the energy E 	 104 J at an accuracy to 25 m in the 

confident recording region. Processing of the seismic monitoring data at 

Kirovsk Branch of Apatit included calculation of the seismic event energy 

E, J. In this study, the energy conversion in the magnitude used Rautian’s 

formula lgE(J) = 1.8M + 4.0 [18]. Starting from 1996, the representa-

tive network energy Ern = 104 J, which complies with the representative 

magnitude Mrn = 0. The catalog used in this study contained data on 

71664 seismic events having 0 
 M 
 3.3. 

The spatial distribution analysis of seismic events triggered by blasting 

used the catalog of blasts implemented at apatite–nepheline deposits in 

the Khibiny Massif during the selected span. 

The chains of trigger blasts and seismic events triggered by them 

were identified using the nearest neighbor algorithm [19, 20]. In this algo-

rithm, for each catalogued earthquake, a foregoer is found amongst all 

preceding blasts by the criterion of the minimum proximity function in the 

space–time–magnitude (energy) environment. This method of identifying 

seismic events induced by basting in the Khibiny Massif is described in [1]. 

Distribution of distances from trigger blasts to trigger events 

In the framework of this study, distribution of the epicentral distances 

r from the trigger blasts with the magnitudes Mm 	 2, Mm 	 2.2 and  

Mm 	 2.4 to induced events with the magnitudes M 	 Mm–1.5 is plotted 

(Fig. 1). It appears that for the post-blasting seismicity in the Khibiny 

Massif, these distances starting from the value r0 follow the exponential 

distribution function: 

( ) ( ) ( )− −= < = − ≥0

0
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s x r

r
F x P r x e x r  (1)
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According to the method of maximum similarity, the estimate 1/s is an 

average value of r–r0 when r 	 r0; the value r0 is found from the Goodness-

of-Fit test [21]; � is evaluated using bootstrap. The evaluated parameter 

s, standard error � (for s) and r0 are given in the caption for Fig. 1. The 

same distribution, starting from a certain value of h0, is valid for the dis-

tances in depth (Fig. 2).

For different magnitudes Mm of a trigger blast, the scatter of s is 

lower than the standard error of both epicentral distances (see fig. 1) 

and depth-wise distances (see fig. 2). We should mention that for the 

depth-wise distances, the scatters of the parameter s and standard error 

� for different magnitudes are higher than for the epicentral distances. 

This is connected with the higher errors in the determination of depths 

than epicenters, and, probably with the depth-wise nonuniformity of the 

stress fields, which increase probability of dynamic events triggered due 

to rock pressure [22, 23], which may lead to variations in the depth-wise 

decrease in the number of triggered events characterized by the param-

eter s. In any case, for the epicentral distances (see fig. 1) and depth-wise 

distances (see fig. 2), the scatter of the estimated values of s falls within 

a proper interval of ±� for Mm 	 2, which reflects of insignificant discrep-

ancy in the parametrs values. Similarly the parameter s is independent of 

the magnitude of a trigger blast. The situation the same with the post-

seismic activity at the Khibiny deposits [2].

It is shown in [2] that attenuation of the post-seismic activity (seismic 

events triggered by an earlier earthquake) in the Khibiny Massif obeys an 

exponential law. This means that the post-blasting seismicity attenuates 

faster than the post-seismic activity. This fact is naturally explained by 

the fact that an earthquake–trigger occurs in a certain neighborhood of a 

hypocenter at a certain level of stresses. The jump in the stresses under 

that trigger and their further relaxation initiates aftershocks [24]. The 

same mechanism is valid for the trigger events triggered by blasts [10, 

12, 15]. Blasts have no directivity patterns and occur irrespective of the 

stress level. Therefore, blast triggered events are fewer [1] and their 

number decays faster as the distance increases from the trigger com-

pared to the case  when the trigger is a seismic event. 

Model of the aftershock domain 

Since the parameter s of exponential distribution (1) is independent 

of the magnitude of a trigger blast, the radius R of a circle embracing 

expected induced events with the magnitude M 	 Mm–ΔM is governed 

by the number of the induced events of the preset magnitude (seismic 

productivity of a blast). 

A triggering blast can initiate a few blast-dependent events that make 

a series. In our study, we consider a single hierarchy scale, and we assume 

that the events in the series are independent of each other, and in each 

series, the number of the blast-triggered events with the magnitudes  

Mm 	 2 to the earthquake-triggered events with M 	 Mm–1.5 obey the 

Poisson distribution with an average Λ [25]. In this case, the probability 

that all triggered events k take place at a distance less than x from a 

trigger is Fr(x)k, where Fr(x) is distribution (1). Using the formula of total 
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probability, we obtain a distribution of the maximal epicentral distance Rmax 

from a trigger blast to a most remote aftershock in a series: 

( ) ( ) ( ) ( )∞ ⎡ ⎤−Λ −−Λ ⎣ ⎦
Λ =

Λ= < = = ≥∑ 1
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, .
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By the law of seismic productivity of blasts [1], the number of the 

blast-induced events obeys the exponential distribution with a frequency: 

( ) −ΛΛ = /1
.L

ex
f e

L  
 (4)

Here, the parameter L is an average number of events with M 	 

Mm–1.5 triggered by blasts with Mm 	 2. 

To determine the distance distribution from the triggered events to 

their trigger by a set of series, we combine (3) and (4) at x 	 r0. The 

resultant distribution function is: 
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where Fr is the function of exponential distribution (1); fr is its frequency (2).

The analogous expressions are valid for the distances in depth at a 

difference that r0 (epicentral distance starting from which the number 

of the blast-induced events reduces exponentially) should be substituted 

for h0 (depth-wise distance starting from which the number of the blast-

triggered events reduces exponentially).

The agreement of distribution frequency (6) and the actual seismicity 

in the Khibiny Massif is illustrated in Fig. 3. The value L = 0.64 is calcu-

lated using [1], where the following estimates are obtained: the param-

eter of distribution of seismic event magnitudes (frequency curve slope)—

b = 1.25, average number of seismic events with M 	 Mm–2 triggered by 

blasts with с Mm 	 2—�2 = 2.7. Then, by the Guttenberg–Richter law, 

using the legend from [1], �1.5 = �210b(1.5–2) = = 0.64 = L.

Practical use 

It is difficult to apply the distribution (5) to determine domains of the 

expected triggered events with the magnitudes M 	 Mm–1.5 at a preset 

probability, since as the exponential downturn only appears at a certain, 
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though short, distance from a trigger blast, and about 25% of all triggered 

events occur at this distance. To consider this feature the constrained 

mining area we use Molchan’s error diagram [26] which shows a detecting 

failure rate  versus an alarm rate �.
Similarly to [2], in the assessment of epicentral distances beyond the 

domain � embracing 100% of aftershocks, the circle radius was assumed 

to be equal to 2.5 km with the center in the epicenter of a trigger blast. 

Such � conforms with the control zone of the Joint Kirov Mine. The esti-

mate of the epicentral alarm domain where aftershocks were expected 

was assumed as a circle with the center in the trigger blast epicenter and 

the radius Rq calculated for the inverse function probability q for distribu-

tion (6): ( )−= 1

q a
R F q . For the trigger blasts with Mm 	 2, the param-

eters included in distribution (5) are: s = 4.61, r0 = 0.03 km (Fig. 1, a),  

L = 0.64. This domain is denoted by Gq, and its area is Sq. 

The alarm rate ��was found as a ratio of Sq to the area of 

� (parameter S�), i.e. � = Sq/S�. The detecting failure 

rate  is a percentage of aftershocks beyond the alarm 

domain Gq. 

In the depth-wise assessment, the domain � was 

assumed to be a domain with the length H� = 1 km, with 

the center in the trigger blast hypocenter, which agreed 

with the depth-wise control zone in mines, and enabled 

encompassing 100% of aftershocks. The depth-wise alarm 

domain of expected triggered events was assumed to be a 

vertical domain Vq with the center in the trigger blast hypo-

center, and with the length Hq calculated for the inverse 

probability function q for the depth-wise frequency Fa (6). 

For the trigger blasts, the parameters in distribution (5) 

are: s = 13.78, h0 = 0.12 km (see fig. 2, a), L = 0.64. In 

this case, the alarm rate � = Hq/H�. The detecting failure 

rate  is a rate of aftershocks beyond the domain Vq. 

Such shape of the domain conforms with a cylinder with 

the radius Rq and the height Hq, and the center of the cyl-

inder coincides with the epicenter of a trigger blast. The 

choice of such shape of the domain allows determining the 

radius and height of the cylinder independently, based on the 

sensitivity of the prediction.  

The  / � ratio for different q is an error path. The diago-

nal (0; 1) (1; 0) stands for the random prediction. A stron-

ger deviation of the error path from this diagonal means 

a better prediction. The parameter q sets the size of the 

alarm domain: the higher q defines the large domain Gq or Vq. 

The error diagram plotted for different q by the ret-

rospective prediction of a domain of aftershocks with  

M 	 Mm–1.5 (Fig. 4) represents a compromise between the 

errors of two kinds: an increase in q decreases probability 

of detecting failure by increases the alarm domain, and vice 

versa. Thus, the scalar parameter q may be described as an 

alarm function [27].

Evidently, the choice of the value of q should depend on 

the objectives of the prediction. Sometimes, it is important 

to have a low probability of the error of the second kind, 

i.e. detecting failure, for instance, when an aftershock may 

lead to unwanted consequences. In other case, it may be 

required to minimizes the size of the domain of expected 

aftershocks, to reduce the cost of alarm maintenance. 

For the standardized selection of q, the three strategies 

method was proposed [28]. The method consists in deter-

mining limit points in the error path, to math with the neu-

tral soft and hard-line strategies (see fig. 4). 

The neutral strategy point (point 0 in fig. 4) is identified 

by the criterion of the minimum loss function � =  + ��  
which is a sum of errors of two kinds. This strategy is 

applied when costs of errors of two kinds are nearly the same or unknown. 

The soft strategy point (point 1 in fig. 4) is governed by the position of 

a tangent to the error path, where due to the proximity of the path to a 

vertical line even a small change in size of the alarm domain by reduction 

in q, can lead to a high rise in the detecting failure probability. Finally, the 

hard-line strategy is point 2 in Fig. 4; the tangent to the error path at this 

point means that the enlargement of the alarm domain cannot reduce the 

failure rate because of the closeness of the path to a horizontal line. 

The Table compiles the values of the trigger blast parameters q, , �, 
Rmax and Hmax to fit with the neutral, soft and hard-line strategies. 

When estimating domains of aftershocks triggered by trigger blasts at 

the Khibiny deposits, these tabulated data may be used as a first approxi-

mation at the blasting design stage. The independence of the epicentral 
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The trigger blast parameters q, , �, Rmax and Hmax to fit with different prediction strategies 

Strategy 
q � 

Rmax, km
Epicentral estimates

Neutral 0.97 0.08 0.12 0.69

Soft 0.89 0.03 0.30 0.40

Hard-line 0.99 0.24 0.04 1.2

Depth-wise estimates Hmax, km

Neutral 0.94 0.28 0.10 0.28

Soft 0.84 0.22 0.23 0.20

Hard-line 0.99 0.43 0.01 0.43
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and depth-wise estimates allows using different strategies of choosing the 

radius and height of a cylindrical domain subject to a blast location. 

For more accurate evaluation for a specific series, it is required to 

take into account the information of the first aftershocks. The model 

described in this article is applicable as a reference model in testing models 

of the first aftershocks. The case-study of the reference model application 

in the assessment of a strong aftershock magnitude and the hazardous 

period duration is presented in [29]. 

Conclusions 

Based on the evidence of long-term data on seismicity and blasting 

operations in the Khibiny Massif, it has been shown that the distances 

from the trigger blasts to the shocks triggered by them averagely obey the 

exponential distribution almost independent of the magnitude of a trigger 

blast. Unlike aftershocks triggered by earthquakes (exponential law-based 

attenuation), the blast-induced events attenuate faster since an earth-

quake, as against a blast, occurs when rocks have accumulated a certain 

level of stresses. 

The analytical research produced a distribution of the maximal dis-

tances at which the post-blasting seismicity is expected, using the law of 

seismic productivity of blasts and the exponential attenuation of the post-

blast seismicity with an increasing distance (epicentral and depth-wise). 

The complience of the distribution and actual data is demonstrated. 

The authors propose modeling the post-blast seismicity domain as a 

cylinder with the center in the epicenter of a trigger blast. The radius and 

height of the cylinder are determined depending on the prediction, impor-

tance based on analysis of an error diagram. The model provides statisti-

cally valid estimates at the stage of the blast design. 
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