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Introduction

The Case-Based Reasoning Technology (CBR-tech-

nology) enables identification of a current situation, 

finding of a suitable case, using the case for solving the 

problem or, if necessary, adapting an already known solu-

tion to handling the current case. 

If the made decisions are not only applicable to a 

specific situation connected with the condition of an 

object or a process, and are re-usable, and the main 

source of knowledge on a problem is the experience, the 

CBR-technology is efficient [1–4]. The CBR approach 

involves some assumptions, namely, that: 

—similar problems have similar solutions; 

—a baseline case can be an example for the similar 

cases further on; 

—it is possible to acquire knowledge through a formal description of 

cases typical of a control object of any nature; 

—there are sufficient optimal (efficient) solutions found by a human- 

operator for frequent situations; 

—there is a large amount of information on external influences. This 

approach is usually applied in such a problem domain which is impossible to 

describe adequately and correctly by mathematical modeling. 

For limiting the field of search for the target problem solution, it is 

assumed that the similar cases containing the known solutions much more 

frequently belong in the same class than in different classes, and that these 

similar classes form compactly localized sets in the space of cases. 

A baseline case contains dozens of characteristics of a control object or 

of a process which runs in the object. Affinity of a case and a problem situa-

tion is evaluated from the pairwise comparison of the characteristics (coor-

dinates). We consider a case as a point in an n-dimensional space having n 

informative characteristics (coordinates). Selection of the characteristics is 

an independent problem omitted in this article. 

CBR-technology application 

The CBR-technology is already used in the applied problem solving in 

planning, forecasting, classification, optimization and regulation on various 

scales of control, and also in learning and training of personnel involved in 

operations/dispatch. Such problems have tendency to reoccur. The periodic 

processes which are expedient to be automated using the CBR-technology 

include, for example: 

• converter steelmaking where the number of melting operations 

(cases) reaches a few thousands yearly, with making over 400 grades of 

steel. The information model of this case is described in the works [5–7]; 

• coal carbonization which is a complex object of control, featuring slug-

gishness, variety of raw materials and produced coke qualities and numerous 

variables, and requires attendance by high-skilled process engineers who 

make decisions in difficult conditions; 

• permanent mold casting [8, 9]; 

• machining [10];

• thermal treatment [11]. 

The CBR method is also used in continuous processes (for instance, in 

gas conditioning [12], flotation [13], continuous casting [14] and cement 

production [15–17]).

Regarding gas conditioning, it is proposed in [12] to valuate a situation 

(normal, emergency, potential emergency), predict it, to give recommenda-

tions to maintenance personnel, and to assess the confidence of the type 

and cause of an accident using a distant CBR system and the inputs as the 

values of main process variables such as: barometric pressure, gas tempera-

ture, rate speeds of rotors of turbines and pumps, temperature difference 

of gas before and after compressor, vibration, and some others. 

The application of the CBR method for predicting accidents in mines, 

which can cause deaths or environmental disasters, is also a relevant scien-

tific trend [18, 19]. 

The hybrid processes, which are numerous in mining and metallurgy, 

combine periodic and continuous operations or stages [20, 21]. The works 

[22–24] describe the application of the CBR method within the geoinforma-

tion systems for solving logical problems connected with spatial relocation, 

i.e., the problems of transportation planning and quality decision-making 

in operative management with regard to different technical and economic 

indexes [25].

For selecting a gold recovery flow process, it is proposed in [26] to 

include the case model with such characteristics as: the ore type, gold ore 

grade, gold distribution, gold grain size, content of sulphides, minerals of 

arsenic sulphide class, minerals of copper sulphide class, minerals of iron 

sulphide class and content of clay. The similarities between gold ore, concen-

trates and tailings was assessed in [27]. The methods described in [26, 27] 

were implemented using open-source software myCBR.

In [28] the CBR system was used to predict fuel consumption per truck 

per trip and general fuel consumption by a truck fleet per shift or per day 

in open pit mines. This allows identifying a situation when a truck consumes 

too much fuel, which makes it possible to decide on corrective measures. 

The cutback in fuel consumption may result in a great reduction in general 

expenditures connected with mineral mining. The factors that influence fuel 

consumption and are entered in an information model of a case are: the 
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type of material hauled by a truck, weather conditions (wind velocity, air 

temperature and pressure), dead time, truck speed and travel frequency, 

road grade, payload, one-way distance, cycle duration, wait time, unloading 

time, basic time, underway time, tones–kilometers per hour, frame torque, 

torque time and sprung load. 

CBR-based control 

The case-based reasoning and decision-making cycle (CBR-cycle) con-

sists of certain clearly sequenced stages: 

—knowledge base (case library) data mining to find and retrieve a simi-

lar case of a set of similar case alternatives for the prevailing problem situ-

ation which requires managerial decision-making; 

—application of the retrieved case in the current problem solving;

—adaptation (revision) of the case-based solution if it fails to meet 

the objective; 

—preservation of the adapted solution as a new case for the future 

analogous situations (automated case saving or with attraction of an expert 

to check conformance with operating procedures—this process can be con-

sidered as a system learning process). 

The efficiency of a CBR-system [12, 29] and productivity of a search 

for similar cases depends on a chosen similarity metric. This subjectiveness 

constitutes a major challenge in using the approach. Let us list some basic 

metrics. 

The Euclidean metric is the frequently used geometrical measure of 

similarity between a previous case and a current problem situation in the 

analysis of data represented by a set of informative characteristics in a 

multi-dimensional space [1]:
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The characteristics should possess equal dispersion, independence and 

weight to assess similarity of situations, phenomena, processes and objects. 

The metric is applicable to the characteristics determined on the continuous 

numerical intervals. The quality of the results obtained using this metric greatly 

depends on the selected normalization algorithm of characteristics. The metric 

loses efficiency with an increase in the number of the characteristics space 

dimensions. In this connection, for adding up the weight of the most largely 

spaced situations and to enhance optimization efficiency owing to simplification 

of a differentiation procedure, the squared Euclidean distance is used. 

The Manhattan distance (a partial case of the Minkowski metric of 

the first order) is closer to the actual distance between a past case and 

a current situation than the Euclidean space. With this measure used, the 

influence of runouts reduces as separate great differences caused by the 

runouts in the Manhattan distance between two points is imaged by dif-

ferent broken curves, and the shortest path is not a single one. The cases 

which are similarly close to a current situation by the Manhattan metric 

can be differently distant from the situation by the Euclidean metric. The 

Manhattan metric is described by the expression below:

=

= −∑2

1

n
s c

i i

i

M X X .

The Chebyshev distance is the maximum difference between numerical 

values of characteristics in a previous case and a current situation. This met-

ric may also be useful when it is required to retrieve a case which greatly dif-

fers from a current situation by any characteristic. This distance is given by: 
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The exponential metric is used when it is necessary to increase or 

decrease the weight of a distance between two characteristics. This mea-

sure is calculated from the formula below: 
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where p and r are the parameters set by a designer (if p and r are equal to 

two, the metric coincides with Euclidean distance).

The Zhuravlev metric is applied to the quantity and quality (e.g., nomi nal 

and ordinal) informative characteristics. Efficiency of this measure follows 

from the possibility of the contensive justification of a threshold ε set by 

an expert, and allows transiting between the quantity and quality scales. 

Evidently, some useful information can be lost in this case. The Zhuravlev 

metric is described by the following system:
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The Canberra distance is a weighted version of the Manhattan distance, 

and is determined using one of the methods below: 
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The Bray–Curtis metric may be given by: 
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[30] (before using this measure, minimax normalizing of values of character-

istics is usually carried out). 

The listed metrics are only a part of the family of the exiting criteria to 

evaluate closeness of vectors in the space of characteristics, but are used 

most frequently. 

The choice of an algorithm to retrieve cases from a knowledge base 

depends on the structure of the latter and on the form of representa-

tion and method of storage of cases. These methods may be built on a 

relational database. The most often forms of representation (structuring) 

of cases are: the parametric representation (a set of measured values of 

the case parameters, i.e. a record in the database), or the object-oriented 

representation in the form of a graph (semantic network), frame, tree, or 

a predicate. 

The repeated use of experience (field data) makes it possible to cut 

down the time spent to solve a problem, and to enhance the control effi-

ciency. A library of cases is a structured representation of the accumulated 

experience in the form of an aggregate of data and knowledge. It can be a 

part of a knowledge base but is usually a CBR-subsystem, which affects the 

time of finding and retrieving cases. 

The aggregate of data and knowledge on methods to described cases 

and on procedures to manipulate them shape a certain information model. 

A case information model used in control includes such components as: 

description of a problem situation (values of characteristics, status of a 

control object), description of a problem solution (sequence of implemented 

control actions, control programs), description of a result of the solution and 

its efficiency (values of quality indexes of the control object functioning). The 

model may contain references to other cases. 
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With a view to abating the impacts of stochastic and nonstation-

ary rough noise in the complex socio-technical systems, it is possible 

to use the algorithms of moving average or exponential first-order or 

second-order shooting, robust smoothing algorithms, or algorithms of 

median evaluation, on-off exponential smoothing and median-exponen-

tial smoothing. Rough noise may appear because of measuring system 

fails, nonrepresentative samples or errors in manual data input. 

The use of a complex-structure representation of cases 

requires using a metric and computation procedure of the same 

complexity. Selection of an adequate metric agreeable with the 

compactness hypothesis is the most labor-intensive and the least 

investigated task; it depends on the characteristics of data being 

processed, objectives of a user, and on the knowledge of a designer 

on a problem domain. If the similarity between a complex problem 

situation and the cases, evaluated using the chosen metric, is much 

less than a threshold set by an expert, the case is created using 

standard methods and procedures which require much time and 

resources. 

The nearest neighbor analysis may appear ineffective if the mea-

sured values of parameters (characteristics) contain fluctuation noises 

and rugged run-outs, are incomplete, or it is problematic to select a 

solution when there are a few cases (from the same or some different 

classes) which are equally distant from the current problem situation 

[29, 31]. This method requires a large-volume memory as the whole 

library of cases is used for searching for a solution. 

It is advisable to make a decision using a few closest-spaced 

points (cases) rather than one point, as this enables reduction in 

the influence of random run-outs, noise and errors which are always 

present in the field data (the maximum number of the closest-spaced 

cases is usually not more than 20; the violation of this term often 

suppresses efficiency of the system because of inclusion of many less 

similar cases).

With large knowledge bases, for shortening search time, it is rec-

ommended to use the case retrieval method based on the decision-

making tree where the lead nodes conform with one or a few cases 

[31]. The choice of a limb of the tree for searching solutions is carried 

out using the data on a current problem situation. When a leaf node 

contains a few cases, the nearest neighbor analysis is then used [32]. 

In larger libraries of cases, efficiency of case retrieval usually lowers. 

If a case exists for a long time but remains unused and is unadaptable, it 

should be placed in an archive. 

The method of fast retrieval of cases on the basis of their semantic 

indexation in real time, assuming the use of weights of parameters (char-

acteristics) and additional knowledge on the application domain, is employed 

in case of small knowledge bases. The coefficients of the relative values of 

characteristics (for instance, from 0 to 1) are set by an expert or by a group 

of experts on the basis of their ranking or pair-wise comparison [33].

According to the concept of industrial internet of things, a bulk of control 

functions may be given to high-performance servers at data processing cen-

ters, while the number and complexity of lower level facilities may jump [12, 

32]. In the framework of this concept and CBR approach, we propose the 

structure of a control system in Fig. 1. The legend in the figure is as follows: 
D

K
W t( ) —actual controllable external effects at the time t; 

D

H
W t( ) —uncon-

trollable external effects; 
DU t( ) —control actions (continuous, period, non-

recurrent); 
DY t( )  and 

DS t( ) —output effects and statuses of an object; 
И

K
W t( ) , 

ИU t( ) , 
ИY t( )  and 

ИS t( ) —measured values of variables of a con-

trol object; �( )Z t —valuations of variables of the control object; IB—inter-

face block (natural language interface); NI—non-instrumental information. 

It is possible to enhance efficiency of control by using digital twins of an 

object. If the control of a complex process includes collection of data by a set 

of distributed information-and-measurement systems, there exists natural 

decomposition of raw data sources, the space contains variable types of char-

acteristics (Booleans, integrals, continuous, images), or a problem situation 

features a high dimensionality of a space of characteristics, it is proposed to 

use a few different metrics jointly (Fig. 2).
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Fig. 1. Structure of CBR-based control 
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The solution adaptation block uses the 

methods described below. 

Adaptation by substitution consists in sub-

stitution of some elements (parameters) in the 

solution of a found case which should be very 

close to a problem situation. To this end, we 

find dependences between the parameters of 

the current situation and the parameters of the 

appropriate solution in the library of cases. 

Adaptation of transformation enables removing and adding elements 

in a solution, i.e. implementing its reorganization, resequencing of opera-

tions by certain rules and using proper operators based on the analysis of 

differences between the new and retrieved cases. When using adaptation 

operators which implement searching with return at a branch point, it is 

necessary to take into account the time of their work with the specific 

field data with the assumption that the number of possible variants is not 

high. The repeated use of elements of a solution is excluded. 

Case-based reasoning in seismic hazard prediction  

in coal mines 

Coal mines are the complex engineering systems which involve tech-

nological impacts on different geological, physicochemical, aerological and 

other processes that, if uncontrolled, can lead to casualties and accidents. 

For solving the problem connected with forecasting seismic hazard 

(seismicity-induced bump with an energy higher than 104 J within the 

coming eight-hour shift, which means that the prediction interval is eight 

hours), we used the proposed approach and the field data (Figs. 3 and 4) 

obtained from the monitoring systems in the test coal mine and aggregated 

within the structured data array Seismic Bumps (from digital library UCL). 

The legend in Figs. 3 and 4 is as follows: 

Х1—resultant hazard from seismic method; 

Х2—resultant hazard from acoustic method; 

a—no hazard; b—low hazard; c—high hazard; 

Х3—information about shift (W—coal mining, N—development 

work);

X4—seismic energy recorded during previous shift by the most active 

geophone (GMax) out of seismic receivers installed in longwall; 

X5—number of impulses recorded during previous shift by GMax; 

X6—deviation of energy recorded during previous shift by GMax from 

average value of energy recorded during eight previous shifts; 

X7—deviation of number of impulses recorded during previous shift 

by GMax from average number of pulses recorded during eight previous 

shifts; 

Х8—resultant shift-wise hazard evaluated by seismic and acoustic 

methods from recordings by GMax only; 

Х9—number of seismic bumps recorded during previous shift; 

X10—number of seismic bumps in energy range [102–103 J] from 

previous shift; 

X11—number of seismic bumps in energy range [103–104 J] from 

previous shift; 

X12—number of seismic bumps in energy range [104–105 J] from 

previous shift; 

X13—number of seismic bumps in energy range [105–106 J] 

recorded in the last shift; 

Х14—total energy of seismic bumps recorded during previous shift; 

X15— energy of seismic bumps recorded during previous shift; 

Y (class)—attribute of solution: 1 means that a high energy seismic 

bump takes place in the next shift (hazard), 0 means that no high energy 

seismic bumps take place in the next shift (no hazard) [34].

Factors that may induce seismic bumps are variable, can be 

expressed quantitatively or qualitatively, i.e. are described using differ-

ent-nature scales, have measurement errors, their distribution differs 

from normal and their inter-connections are nonlinear. Some factors 

•  •  • 
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result from aggregation of partial indexes, which usually results in a partial 

loss of useful information. The seismic and acoustic methods fail to provide 

a high-accurate prediction of seismic hazards in coal mines [34].

The numbers of the closest cases ordered using different metrics, and 

the related classes (0 or 1) for a test situation Sit1 = {X1=a; X2=a; 

X3=W; X4=207930; X5=614; X6=-6; X7=18; X8=a; X9=2; X10=2; 

X11=0; X12=0; X13=0; X14=1000; X15=700; Y=0} are presented as 

follows: 

by the Euclidean metric and square of the Euclidean distance—{(58;0), 

(102;0), (843;0), (2075;0), (1687;1), (846;0), (493;0), (2022;0)};

by the Manhattan metric—{(58;0), (2075;0), (843;0), (102;0), 

(1687;1), (493;0), (2022;0), (846;0)};

by the Chebyshev metric—{(58;0), (102;0), (846;0), (843;0), 

(570;1), (573;0), (493;0), (2002;1)};

by the exponential metric (at p = 4, r = 6)—{(58;0), (102;0), 

(843;0), (846;0), (493;0), (573;0), (2075;0), (570;1)};

by the Zhuravlev metric—{(273;0), (274;1), (579;0), (661;0), 

(681;0), (781;0), (875;0), (2075;0)};

by the Canberra and Bay–Curtis metrics—{(58;0), (2075;0), (102;0), 

(843;0), (1687;1), (493;0), (846;0), (2022;0)}.

The numbers of the closest cases and the related classes for a test situ-

ation Sit2 = {X1= a; X2= a; X3= N; X4=384230; X5=751; X6=4; X7=6; 

X8= a; X9=3; X10=1; X11=2; X12=0; X13=0; X14=9700; X15=6000; 

Y=1} are presented as follows:

by the Euclidean metric and square of the Euclidean distance—{(141;0), 

(388;0), (347;0), (398;1), (699;0), (640;1), (465;1), (445;1)};

by the Manhattan metric—{(445;1), (640;1), (141;0), (398;1), 

(436;0), (388;0), (646;0), (507;0)};

by the Chebyshev metric—{(141;0), (347;0), (699;0), (865;0), 

(388;0), (398;1), (465;1), (490;0)};

by the exponential metric (at p = 4, r = 6)—{(141;0), (347;0), 

(699;0), (388;0), (398;1), (465;1), (865;0), (490;0)};

by the Zhuravlev metric—{(747;0), (865;0), (2133;0), (141;0), 

(216;0), (388;0), (398;1), (403;0)};

by the Canberra and Bay–Curtis metrics—{(445;1), (640;1), (141;0), 

(398;1), (436;0), (388;0), (646;0), (507;0)}.

Before using the metrics, we undertook minimax normalizing of all quan-

tity characteristics (factors). The Zhuravlev metric was applied to the quan-

tity and quality characteristics, and the other metrics were only applied to 

the quantity characteristics. 

If the found primary sets of cases contain more than two classes 

1, a hazardous situation is possible. The knowledge base only contains 

2584 cases out of which 170 case have class 1. The out-of-balance 

distribution of cases per classes greatly complicates the procedure and 

reliability of reasoning as the elements in the ranked sequences of cases 

have noticeably different weights, Nonetheless, it is evident that if the 

closest (the first in the sequences) elements by any test metric contain 

class 1 of a hazardous situation, it is better to initiate the confirmation 

procedure. To this effect, the authors propose to use the Random For-

est Classifier. The Random Forest method is a classifier that contains 

an ensemble of decision trees. For 100 trees which have a max_depth 

parameter equal to 2, the classification accuracy was 94.54% from 

the method of 10-fold cross check (procedure ms.cross_val_score). 

For 21 trees with the depth parameter of 3 or 4, the classification 

accuracy grew to 100%. The same accuracy is ensured by a forest of 6 

trees with the depth parameters from 5 to 9, or by a forest of 8 trees 

with the depth parameter from 10 to 15. The hazard prediction by this 

method uses all test characteristics (see figs. 3 and 4).

The final set of the closest cases required for an object control 

includes the cases from the primary sets, if their class number agrees 

with the result of recognition by the Random Forest. In case that a haz-

ardous situation is predicted, the rockburst hazard reduction requires 

undertaking certain technical and technological procedures. 

The development of the procedure for searching close cases used the 

library of the high-level language Python, which enabled implementation of 

some basic methods of machine learning—Scikit-learn with regard to the 

architectural concepts consummated on the spatial platforms CAT-CBR and 

myCBR.

Conclusions

Automation of argumentation by means of the case-based reasoning 

aims at creation of libraries of cases for their storage and automated 

search of their attributes and methods to evaluate similarity between a 

previous case and a new target situation for selecting the most suitable 

case, its adaptation techniques and visualization tools. 

The known metrics of similarity (closeness) are analyzed. The struc-

ture of control using the industrial internet of things and the case-based 

reasoning is proposed. The advantage of the CBR-technology capable to 

process both numerical and symbolic information consists in its capacity 

to solve ill-structured and ill-formalized problems subject to insufficient 

knowledge on a control object and on its external environment. 

The CBR-technology allows direct application of accumulated experi-

ence of problem solving, heuristic evaluation, reduction of time of com-

plex problem solving, elaboration of control actions to reach the objec-

tive under uncertainty, warning of a user on possible failure, elimination 

of potential re-use of an erroneous decision and creation of corporate 

memory and information resource of an enterprise. The scope of sav-

ing embraces cases which have both positive and dubious or negative 

outcome. 

The proposed approach differs from other techniques of using knowl-

edge bases by employment of a set of metrics to search for the closest 

cases based on various quantitative and qualitative information char-

acteristics in real time, application of the Random Forest method, and 

by incorporation of knowledge bases with information models of cases, 

descriptions of situations, sets of control actions and their implementa-

tion results. 

Nevertheless, the topical objectives of the further basic and applied 

research remain: 

—the provision of high productivity of the CBR system at high num-

ber of cases;

—the improvement of the validity of expert knowledge on a problem 

domain for the case description; 

—the creation of applications ensuring efficient use of the CBR-

technologies for planning behavior of dynamic media. 
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