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Introduction

Granite intrusions are often associated with dif-

ferent minerals (for example, ores W, Sn, Nb, Ta, Li, Be, 

Rb, Cs and REE) [1, 2]. There are some known ore runs 

within the Syrostan Massif, including skarn bodies and 

gold-bearing quartz veins. Understanding of distribution 

of elements in the course of their evolution from magma 

to hydrothermal phase indispensably requires a profound 

knowledge on petrogenesis and tectonic mechanism of 

granite intrusions. 

This study aims to reveal petrological features of the 

Syrostan granite to improve understanding of its forma-

tion conditions and mineralization potential. 
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Regional geology and tectonics 

The Syrostan Massif occurs southwestward of Miass town, in the 

zone of the main Ural deep fault (Fig. 1), among metabasites and shales 

of various compositions as well as fragments of metamorphic oceanic 

crust and passive margin crust of the Ural paleo ocean [3, 4]. The 

Massif has a polyphase structure established during the Lower Carbon. 

The first phase represents grandiorite and quartz diorite, the second 

phase is plagiogranite and the third phase is a dyke system [5, 6]. 

The Massif represents an isometric body (see fig. 1). Its root zone 

in the south is opened up with surface mines. This zone is composed of 

migmatitic gabbroids and anatectic grandiorites. The center and the north 

of the Massif are mostly composed of biotite granite and grandiorite. In 

the southwest, there are local adamellite and granite with small lenticular 

gabbro bodies [7, 8]. 

Analytical methods  

and samples 

Rock samples for the petrographic and geochemical analyses were 

collected during the on-site research. After thorough examination of 

numerous microsections under a microscope (Altami), nine samples were 

selected for the geochemical analysis: microgranite (3 samples), leuco-

granite (3 samples), biotite granite (2 samples) and one sample of diorite. 

X-ray fluorescence spectroscope (XRF) was used to determine concentra-

tions of petrogenic oxides and some microelements. At the Institute of 

Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements, Russia, 

using the inductively coupled plasma mass spectrometry (ICP-MS), the 

contents of microadmixtures and REE were measured in four samples. 

Results  

Petrographic research 

Microgranites contain quartz (15–25%), 

microcline (20–50%), plagioclase (20–40%) 

and biotite (5–10%), and have a medium-grain or 

coarse-grain structure (Fig. 2a). In plagioclase, 

sericite, muscovite and epidote develop. In zonal 

plagioclase, the contents of epidote and sericite 

grow from the core to the periphery (Fig. 2b). 

Quartz (15–20%), plagioclase (35–55%), 

microcline (15–35%) and biotite (5–15%) make 

the most part of biotite granite. The accessory 

minerals are apatite and monazite (Fig. 2c). 

Leucogranites contain up to 30–35% of quartz, 

20–30% of plagioclase, 10–15% of potassic 

feldspar and from 0 to 5%p of biotite. Biotite 

often contains noddles of zircon. Diorites con-

tain plagioclase (50–55%), biotite (15–35%) 

(Fig. 2d), potassic feldspar (5–10%), quartz 

(5–10%) and amphibole (0–5%).

Geochemical features  

and classification of granitoid rocks 

The Total Alkaline Silica (TAS) and modal 

classifications classify granitoid rocks as mostly 

granite and diorite (syenodiorite) [9] (Fig. 3a). 

Granite is rich in silicon dioxide SiO2 at concen-

trations from 59.54 to 76.14 wt.%. Diorite has 

an intermediate chemical composition (SiO2 — 

52.89 wt.%). Granitoids feature high total alka-

lines K2O+Na2O (7–10 wt.%), moderate ratio 

K2O/Na2O (0.37–0.83) and a very low or aver-

age content of CaO (0.5–6 wt.%) at extremely 

low values of P2O5 (0.01–0.5%). The loss on 

ignition (LOI) is also mostly low and ranges from 

Fig. 1. Geological map of the Syrostan Granite Massif enclosing the Dark 

Kingdom Marble Deposit ([2] as amended) 

Legend: 1 — gneiss; 2 — micaceous quartz shale; 3 — marmorized limestone; 4 — 
quartzite; 5 — shale; 6 — marble; 7 — carbonaceous shale; 8 — quaternary deposits; 
9 — grandiorite, quartz diorite, diorite; 10 — porphyry biotite granite; 11 — pink 
porphyry biotite granite; 12 — fine-grained granite and plagiogranite; 13 — pegmatite; 
14 — serpentine; 15 — tectonic faults; 16 — niobium occurrences 
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0.6 to 2 wt.%. It follows from the K2O–SiO2 diagram [10] that the bulk 

of the rocks belong to high-K calc–alkaline series and calc–alkaline series 

(Fig. 3b). The same statement follows from the analysis of the ACM dia-

gram [11] (Fig. 3c). Furthermore, in the diagram of the Silica Saturation 

Index (Fig. 3d) most granitoids occur in the domain of metaluminous forma-

tion, but some samples gravitate toward the domain of peraluminous rocks 

(see fig. 3d). The supportive data from the analysis of the Harker diagrams 

describe the behavior of basic oxides (Al2O3, Fe2O3, MgO, CaO, TiO2 and 

P2O5) as function of the content of SiO2 (Fig. 4). It is seen from the pre-

sented diagrams that the increase of the silica acidity in the test rocks lead 

to a general decrease in the listed components at their negative correlation 

with SiO2 (see fig. 4 a–f). At the same time, the picture is cardinally differ-

ent in terms of alkalis (K2O and Na2O), but it is clear that they have no any 

correlation with silicon oxide. 

Microelements and tectonics 

The content of strontium in granitoids of the Syrostan Massif is given 

in Table. 

The concentrations of Rb in rocks fluctuate from 10 to 20 ppm, 

Zr  —  from 20 to 100 ppm and Hf  —  from 1.1 to 2.5 ppm. In the 

tectonic discrimination diagrams (Y + Nb vs Rb, Y vs Nb, Ta + Yb vs 

Rb), the test samples occur in the field of the volcanic arc granites (VAG) 

[12] (Fig. 5a–c). The same samples in the Yb–Ta diagram are classi-

fied as the syncollision–arc granites (syn-COLG) (Fig. 5d), while in the  

Hf–Rb/30–3Ta, they are in the domain of the late- and post-collision granites 

[13] (Fig. 5e). Furthermore, the ratios of the elements detected in the 

samples are: Rb/Ba (0.05–0.70); Rb/Sr (0.1–0.05); Nb/Ta (8–16); Nb/La 

(0.6–0.3); Nb/Ce (0.4–0.2); Th/Ta (3.5–8.5) and Zr/Hf (38–52). 

The features of rare earths in the test samples are described in Fig. 6. 

As is seen in the spider diagram in Fig. 6a, the rocks are richer in the light 

rather than heavy REE, at the ratios (La/Sm)N ranged from 3.5 to 6.5 and 

(Gd/Yb)N from 1.25 to 2.8. The samples have a weak negative europium 

anomaly (Eu/Eu* 0.2–0.4) with its minimum in leucogranite [Eu (Eu/Eu* 

0.18)]. According to fig. 6b, the compositions of granitoids normalized with 

respect to the mantle components have negative anomalies of Сs, Nb, Pr, Zr, 

Ti and, partly, Ba and Ce, which may be inherited from the initial magma [15]. 

Petrogenesis and classification of rocks 

Granites of calc–alkaline and high-K calc–alkaline series are known in the 

Middle and Southern Urals, and are standard type I granites, which is con-

firmed by the values of the index A/CNK [16, 17]. The indexes A/CNK ([Al2O3/

(CaO+Na2O+K2O)]) and A/NK (A/NK – [Al2O3/(Na2O+K2O)]), intrinsic to 

type I granites, are given in the studies on granitoid masses in the southeast 

of Asia [18, 19]. The similar values of the indexes in the range of 0.73–1.01 

are determined in the Syrostan Massif rocks (see fig. 3d) which belong to the 

metaluminous and peraluminous varieties [20, 21]. 

As was noticed, against background of the high total alkalinity (7–10%), 

the content of P2O5 in the Syrostan granites is low (0.01–0.28%) (see fig. 

4f). According to [22, 23], this also points at belonging of these rocks to type 

I granites. 

One more interesting feature of the Syrostan granites [22, 23] is the 

negative correlation between the earlier discussed maphic rock-forming 

oxides and SiO2, while Na2O and K2O clearly tend to a nonlinear scatter and 

are weakly correlated with that component. Evidently, this specifics of the 

rock chemistry should be considered as a sign of crystallization fractionation 

of magma in the course of its evolution [24, 25]. The crystallization differen-

tiation of the melt magma is also pointed at by the other chemical and min-

eral components of granitoids [26-28]. In this regard, the most informative 

sign is the negative anomaly Eu2+ <1 identified in leucogranite rocks (see 

fig. 6a). It is assumed that this fact is reflective of the element removal from 

the magma composition either owing to protolyte substance concentration 

in plagioclase minerals or owing to their crystallization from the magma melt 

during its transformation [29–31].

Tectonics–granitoids correlation 

In Pierce’s tectonic discrimination diagram (see fig. 5a), the test sam-

ples take the field of VAG, which allows supposing formation of the Syrostan 

Massif in the geodynamic environment of a developing volcanic arc. The simi-

lar examples are described in the works [32, 33]. However, as distinct from 

the described cases, in the Hf–Rb/30–3Ta discrimination diagram [13] (see 

fig. 5e), the test granite samples occur within the fields of the post-collision 

and within-the-plate continental environments, which, on the whole, agrees 

with the high-K and calc–alkaline characteristics of the test granites. This 
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fact can be explained as follows. It is assumed that the volcanic arc magmas 

form from the LIL rich mantle wedge above the subduction zones in the oce-

anic lithosphere [34, 35]. Such magmas have geochemical characteristics 

which are partly preserved in the collision-altered rocks. It is highly probable 

in this case that compositions of the magma melts were subjected to con-

tamination connected with assimilation of enclosing rocks and, first of all, 

rocks from the crust bottom. This situation is quite valid for the Syrostan 

granitoids and is described for some regions in [36–38]. The proof of this 

statement is the compositions of the Syrostan granites normalized with 

respect to primitive mantle (see fig. 6b) [39]. The pronounced negative 

anomalies of Nb in the figure confirm the participation of the continental 

crust in the magmatic processes [40–42]. The ratios Nb/Ta (8–16) < 17 

point at the existence of melts of the depleted mantle, which also follows 

from the behavior of P and Ti relative to the primitive mantle composition 

(see fig. 6b) [43, 44]. 

Finally, the above-discussed data allow assuming formation of granitoids 

of the Syrostan Massif in the geodynamic mode of the volcanic arc given 

crystallization of the magma melts formed during partial melting of the con-

tinental substance in the zone of slab subduction [45, 46].

Conclusions

Granitoids of the Syrostan Massif are rich in silicon oxide SiO2 at con-

centrations from 59.54 to 76.14 wt.%. Diorites have an intermediate con-

tent of SiO2 at 52.89 wt.%. The test samples are characterized with the 

high values of the summed alkaline K2O+Na2O = (7–9 wt.%) and ratios 

K2O/Na2O in the range from 0.37 to 0.83. The concentrations of P2O5  

(0.01–0.5%) and CaO (0.5–6%) are low. 

The higher contents of the light REE as against the heavy REE are 

revealed, at the ratios (La/Sm)N from 3.5 to 6.5 and (Gd/Yb)N from 1.25 to 

2.8, and at the negative Eu anomaly.

The metaluminous to peraluminous rock belong to high-K to weakly calc-

alkaline series. The basic geochemical characteristics allow classifying the 

test granitoids as type I granites. 

It is highly probable that the Syrostan Massif was formed under the 

island-arc geodynamic mode under the conditions of partial melting of the 

over-slab continental substance. 
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