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Introduction

The present-day methods of uranium production in the world’s 

countries, including Kazakhstan, involve the following processes: 

deli very of chemical solutions via injection well, delivery of pregnant  

solutions via production wells. Such wells can be laid out in linear or 

square patterns. 

A new formulation of the innovative technology of hydrogen ura-

nium production dictates execution of research activities in two direc-

tions — accessing and extraction of the raw material; disclosure of 

shortages of uranium mining technologies with a view to eliminating 

them completely. There exists a new innovative technology of uranium 

mining [1–6]. The authors cultivate efficiency of innovative technologies  

for hydrogenous-type uranium deposits. A patter of piston wells is 
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design for the Semizbay hydrogenous-type uranium deposit. The consump-

tion rate of chemical solutions for leaching of useful components from ura-

nium deposits is determined. The generality of the innovative technology 

of obtaining pregnant solutions of useful components (metals) is demon-

strated. The innovative procedure for the utilization of hydrogenous-type 

uranium deposits is developed. The injection wells are similar to the wells 

meant for delivery of a treatment mixture composed of a sulfuric acid solu-

tion (H2O + n% H2SO4) of microorganisms (Thiobacillus Ferrooxydans) to 

hydrogen reservoirs. 

The goal of this research is to create an innovative exploitation tech-

nology for pyrogenetic-type uranium deposits toward the benefit of power 

engineering in Kazakhstan. 

Research methodology 

To achieve the goal, the methods of theoretical justification of the  

in-situ uranium leach technologies were used in terms of the Semizbay 

deposit. In the early 1980s, it was planned to perform pilot tests of uranium 

production by the hydraulic mining method (HMM) at the Semizbay deposit. 

The tests were to be carried out on an area 50�25 m between geodetic 

profiles GP184+75 and GP185+25. All necessary geological, geophysical 

and hydrogeological preparations were fulfilled at the test site. However, 

after amendment of the deposit appraisal, it was decided to reject HMM 

and develop the deposit using in-situ leaching as the resources mineable 

with HMM were limited to 20–25% of the deposit. The development of the 

hydrogenous-type uranium deposit used the following patterns of process 

and production wells: linear (rows), square (cells) and mixed-type. An alter-

native method to feed chemical solutions to a hydrogenous-type uranium 

generation plant was elaborated. The annual productivity P was found from 

the formula of the required volume V of pregnant solutions with the average 

concentration C of 70 mg/l per 1000 t of uranium and pregnant solutions 

(PS) annually: V = P/C [1, 2, 7–9]. 

The process chart is as follows: chemical and biochemical solutions 

pumped in injection wells seep through pores and cracks in H-bearing plate 

toward nearby pumping wells. When flowing, the chemical solutions concen-

trate uranium and become pregnant solutions which pumped out to the sur-

face and sent to a processing plant for treatment using sorption and desorp-

tion processes to produce uranium. To this end, a system composed of 

various equipment called a sorption plant is employed. The plant includes sorp-

tion and regeneration columns, pools for rich and poor solutions, reservoirs  

for treatment of chemical concentrates, pumps, pipelines and auxiliary res-

ervoirs to prepare solutions for leaching, decontamination and purification of 

waste water. For the hydrogenous-type uranium production at a flow rate 

more than 0.5 m/day, the most efficient technology is “well-in-well flushing”. 

Thus, the in-situ leach process flow takes into account metal uranium leaching 

and natural occurrence of uranium reservoirs [7, 10–12].

Research findings 

In this manner, the research determined efficiency of the innovative 

technology at a hydrogenous-type uranium deposit. The cost of chemical 

additives used in leaching useful uranium compounds is calculated. The gene-

rality of metal treatment, including pregnant mixtures of useful compounds, 

using the innovative technologies is demonstrated. The methodology of the 

innovative technology for the hydrogenous-type uranium deposits is deve-

loped. Owing to pistons arranged in wells, in mining hydrogenous-type  

uranium on a 100–200 m area, it is possible to reduce the number of the 

wells by 4 or, for the higher efficiency, by 7 wells. 

Uranium production is one of the critical branches of the mining industry 

in Kazakhstan. The country is the world’s first producer of uranium and the 

world’s second holder of uranium reserves. Annually, Kazakhstan produces 

more than 20 Kt of uranium. This is around 20% of the total uranium pro-

duction in the world. Since 2018 uranium is on the first place in terms of 

the volume of production in the world. The main uranium deposits in Kazakhstan  

occur in the Turkestan, Kyzyl-Orda and Akmolinsk Regions. The first 

commercial deposit Korday in Kazakhstan was explored and proved in 1951. In 

the late 1960s, the Shu-Sarysy, Ile and Syrdaria uranium mines were opened. 

Those territories became the world’s largest holders of uranium reserves. 

At the present day, uranium reserves registered in the Mineral Fund of the 

Republic of Kazakhstan total more than 450 Kt. This involves 26 proven 

deposits, including 14 deposits belonging to Kazatomprom [1, 7, 13, 14]. 

The process of uranium mining consists of drilling, well placement and 

production stages. Uranium is mainly produced by the method of in-situ 

leaching (ISL). The method was used for the first time in the world in the 

1960s. In 2017 more than 50% of the world uranium was produced by 

this method. The main reasons of the wide application of the method are its 

simplicity, safety and low price. Kazakhstan has achieved the lowest cost of 

uranium production in this respect. The in-situ uranium leaching technology 

has no adverse effect on the earth crust as compared with other under-

ground and opencast methods. Experts in the field of in-situ geotechnologies 

of mineral mining state that in ISL, no ground subsidence or soil damage 

takes place, no dumps are left on ground surface while it is possible to cont-

rol production processes using geophysical methods [15–27]. More than 

65% of global proven uranium reserves mineable by in-situ leaching occur in 

the area of Kazakhstan [1, 2, 28].

The geotechnology applied at all uranium deposits in Kazakhstan, inclu-

ding the Inkay deposit in the Turkestan Region, has three stages. These are 

drilling, mining and processing. The operation starts with drilling into uranium 

deposits located at a depth of 300–350 m. Dozens of technological facilities  

are operated here, and more than 1000 wells are active. Flushing of wells 

uses an eco-friendly technique, and all water is pumped out to ground  

surface. Environmentally, this method is safer than opencast or underground 

technologies. Annually, 900–1000 new wells are commissioned on one pro-

duction site. Industrial infrastructure is continuously expanded. Because of 

the local climate in Kazakhstan, pipelines are laid below ground, and no liquid 

freezing takes place in winter months. After completion of exploration, more 

than 1 month is spent before the first uranium is produced. Drilling of one well 

takes 3–3.5 days. Then, fastening, coupling and acidification are executed. 

Acid is fed not in pure but in mixed form. Approximately, in 30–35 days, 

uranium can be delivered to the surface. Recovered uranium is reduced to 

the condition of yellowcake and is sent to processing plants. The plants are 

located in the Turkestan and Eastern Kazakhstan Regions [1, 2, 7, 10, 29].

The Table informs on uranium reserves per the test field and per its 

deposits. 

 

Discussion 

For the first time in the world’s practice, all-year in-situ uranium 

leaching has been performed in the conditions of harsh climate. A criti-

cal point to address in this regard is, whether it is hazardous for peo-

ple to live in the area after production completion. Moreover, the time 

required for disinfection and closure of each production site is estimated. 

The mines can operate for 30–50 years in accordance with the size of 

the uranium reserves and initial contract project. After completion of 

operations at a production site, reclamation is to be carried out. All sur-

face infrastructure and pipelines should be liquidated. No contamination 

is expected. However, if any contamination is detected, soil is removed 

down to a clean layer. Ground is expected to recovery completely in 

3–5 years. The place will restore its natural state as a result. In-situ ura-

nium leaching has a weaker environmental effect as compared with tradi-

tional underground and opencast method. Furthermore, the main feature 

is small quantity of sand in production of metals from uranium ores. The 

authors use the method with water or an alternative solution with sul-

furic acid, which is sent via injection wells and pipelines to the subsoil, 

which, naturally, has an adverse influence on the surface environment.  

Uranium ore in underground strata is converted from solid state to liquid 

phase and is then recovered to ground surface through wells. Then, via 

pipelines, it is sent to uranium processing plants [1, 7, 30, 31]. 
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In 2020 Kazatomprom purchased a uranium processing and conversion 

technology from Canadas’ CAMECO Corporation. Accordingly, additional value 

appears in uranium production, and income grows. However, Kazakhstan  

yet lacks a uranium enrichment technology. Kazakhstan participates in  

a Russian project of uranium enrichment and sends uranium to the northern 

neighbor country for that. Production of uranium oxide powder and fuel pellets  

is executed at the ULBA Metallurgical Plant since 1973. Furthermore, 

ULBA carries out a project connected with manufacture of fuel assemblies 

together with CGNPC from China [1, 10, 31–33]. 

The countries–holders of major uranium resources are the USA, Australia,  

Canada, the United Arab Emirates, Namibia, Nigeria, France, Spain and 

Portugal. Large deposits contain more than 10 Kt U3O8, mean deposits — 

from 1 to 10 Kt, and small deposits — to 1 Kt. Foreign countries demand 

80–100 Kt of U3O8 while its production is around 42 Kt. Nearly 200 000 t 

is stored at warehouses in the countries–producers. The largest producers 

are the USA, Canada and the Republic of Uzbekistan [1, 10, 31–33]. 

Kazakhstan holds around 25% of global uranium reserves, which totals 

1.5 Bt of uranium. Proven uranium reserves equal 470 Kt. This figure sets 

the country on one of the first places in the world, including the largest 

uranium provinces of Sarusyn and Syr-Daria in the south of Kazakhstan. 

More than 200 uranium deposits are concentrated here, including the 

largest deposits of Inkay, Budennov, Myng-Kudyk, Uanas, Tort-Kudyk,  

Moiynkum, Kandzugan and other. The first three deposits in this list are 

unique [1, 10, 31]. 

The largest deposit in the Syr-Daria Region is Kharasan, and the other 

large deposits are the Northern and Southern Karamuryn, Iirkol and Zarechnoe. 

As per the contour map of the Chu-Sarysui uranium province (Volkovgeologia, 

2002), large organophosphorus uranium deposits (Melovoe, Tomak, Taybagar, 

Tasmuryn) occur on the Mangistau Peninsula, Mangistau–Caspian ura-

nium province. The Northern Kazakhstan uranium province contain 298 

endogenous deposits, including the extra-large Kosash deposit, and the 

largest deposits of Grachevskoe, Zaozernoe, Manybay and other. The 

Chu–Ile–Betpak-Dala Regions accommodates the Botaburym, Kyzyl-Say,  

Zhideli and other deposits (almost all are developed). In recent years, the per-

centage of the endogenous deposits, assumed as the most critical, greatly 

reduced. The reason is development of stratification hydrogen deposits  

(around 75% of actual reserves of category R1) which are mineable  

using the most advanced and efficient method of in-situ leaching. Today the 

stratified deposits are the main source of uranium in Kazakhstan. Along 

with uranium, in-situ leaching recovers rhenium, vanadium, selenium, rare 

earths and other elements. Useful components of organogenous phospho-

rus–uranium ore are scandium, rare earths and phosphorus, while uranium 

coal contains molybdenum, rhenium, cobalt, silver, germanium and selenium. 

Commercial-value uranium occurs at deposits of various genetic types in 

Kazakhstan [1, 7, 10, 33].

Conclusions

Uranium is a main feedstock for the nuclear power generation. Further-

more, uranium is used in the analytical chemistry, photography, glass indus-

try, geochemistry and mineralogy. The average amount of uranium produced 

per a site of wells with the diameter of 10 cm and 7 m long, given that the 

well penetration zone is 2.5 m in diameter and 10 m deep is 4%.

This amount grows from the ultrabasic rocks to basic rocks and to 

acidic rocks. Uranium concentration ratio (at average uranium content of 

0.1%) is around 400. There are nearly 100 minerals which contain uranium. 

Amongst them, the commercial value is a feature of uraninite (uranaten-

nite, broggerite) UO2 (92% U) and its amorphous form — uranium ingot 

(60% U). All uranium-bearing minerals are radioactive, and this property is 

utilized in exploration, mining and processing of ore. Uranium-bearing minerals 

are readily dissolved in weak acids and alkalis. This property is also used in 

underground and hydrometallurgical processing. The main commercial place 

is taken by oxide ores, sometimes — uranium vanadates (carnotites),  

phosphates (torbernite, autunite) and arsenate (zeunerite). The minimal quan-

tity of U3O8 is 0.1% in small deposits and to 0.05% in large deposits. Uranium 

reserves are appraised at different levels of actual cost of the end product. 

Kazatomprom, together with its subsidiary and joint organizations, performs 

production activities in 26 industrial areas in the Republic of Kazakhstan,  

which are united in 14 mining assets. The method of in-situ leaching was 

for the first time used in the 1960s and attained 50% of the global ura-

nium production by 2017. As compared with the traditional technologies, the  

in-situ leach technology has a weaker environmental impact, and ensures the 

lowest production cost at the high indicators of industrial and occupational 

safety [1, 3, 4, 10, 33–35]. 

Kazatomprom is an absolute leader in uranium production by the in-situ  

leaching method and beats rivals by producing 21.2 Kt of uranium in 2022 

as against 11.4 Kt (22% of the world’s uranium production). The geologi-

cal conditions favorable for in-situ leaching in Kazakhstan ensure the unique 

competitive advantage of Kazatomprom. All processes involved in uranium 

Uranium reserves at Semizbay deposit (relative percentage) 

Reserves Field Deposit 

Whole reserves: 100 21.1 6.5 3.0 6.2

total (LSH and USH*). 42.2 62.2 11.5 6.5 3.0 6.2

Including to a depth to 100 m 15.5

Including in conglomerates 6.6 2.8 – 0.9 2.9

LSH. 13.1 – 2.2 – 0.7 –

Including to a depth to 100 m 8.2 – 2.2 – 0.7 –

Including in conglomerates – – – – – –

USH. 86.9 53.0 18.9 6,5 2.3 6.2

Including to a depth to 100 m 43.0 9.7 9.3 6.5 2.3 6.2

Including in conglomerates 6.6 – 2.8 – 0.9 2.9

Whole reserves: 

total (LSH and USH*). – 100 100 100 100 100

Including to a depth to 100 m – 23.8 54.5 100 100 100

Including in conglomerates – – 13.0 – 31.6 46.6

*LSH — lower stratification horizon; USH — upper stratification horizon 
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production are automated and subjected to permanent control at the  

Company, and equipment employed in Kazatomprom’s mines is entirely up 

to the environment and safety standards such as OHSAS 18001 and ISO 

14001 [1, 10, 32, 34, 36].
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