УДК 622.275.5 © Ю. А. Попова, 2008

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ САМОТЕЧНОГО ГИДРОТРАНСПОРТИРОВАНИЯ ВСКРЫШНЫХ ПОРОД НА ВАЛУННО-ГРАВИЙНЫХ ПЕСЧАНЫХ КАРЬЕРАХ

Ю. А. ПОПОВА, аспирант (МГГУ)

В настоящее время валунно-гравийно-песчаные месторождения Центрального региона отрабатывают, как правило, до уровня подземных вод с применением экскаваторно-автомобильных комплексов. На отдельных объектах нижний добычной уступ (обводненную часть месторождения) разрабатывают земснарядами с подачей гидросмеси на дробильно-сортировочную фабрику.

Одним из путей снижения трудовых затрат, расхода металла и энергии является применение на вскрышных работах самотечного гидравлического транспорта. Существенным достоинством гидромеханизированного транспортирования породы в отвал является его экологичность. Предпосылкой эффективного применения на карьерах Центрального региона гидравлического транспортирования служит низкий коэффициент вскрыши — не более 1 м³/м³. В большинстве случаев мощность вскрышных пород, представленных в основном суглинками, супесями и подобными сравнительно легкоразмываемыми породами, составляет первые метры при мощности песчано-гравийных отложений в несколько десятков метров. Геодезический перепад высот между подошвой вскрышных пород и дном карьера создает предпосылки для их самотечного транспортирования в отработанное пространство на расстояние нескольких сотен метров.

Сложность принятия решений о применении самотечного транспортирования объясняется кажущейся их меньшей технологической гибкостью по сравнению со схемами с автотранспортом. Но на песчано-гравийных карьерах имеется возможность регулирования уклонов монтируемых трубопроводов за счет изменения плотности гидросмеси, что при коэффициенте вскрыши не более единицы позволяет сформировать высокоэкономичную геотехнологию. В ее основу положено формирование гидромониторного размыва при попутном забое. Образующаяся при этом гидросмесь по пульповодным канавам стекает в

зумпф, расположенный на верхней площадке добычных уступов, из которого самотеком по трубам поступает на гидроотвал, расположенный в выработанном пространстве карьера (рис. 1). Сформированную гидросмесь следует намывать на гидроотвал сначала торцовым способом, а по мере увеличения площади гидроотвала можно переходить на рассредоточенный намыв.

Водоснабжение гидроустановки осуществляется за счет дренажных вод карьера, а также вод, отводимых после намыва вскрыши с гидроотвала. Таким образом, для замкнутого цикла водоснабжения в большинстве случаев не потребуется подавать воду из-за пределов карьерного поля.

Самотечные коммуникации располагают на нерабочих бортах карьера на наклонных бермах. Такое расположение, а также организация самотечного транспортирования по замкнутым трубопроводам обеспечивает экологичность разработанной технологии.

При выборе параметров самотечных установок предлагается руководствоваться данными, приведенными в таблице.

При исследовании зависимости удельного расхода воды от критического уклона с использованием методик расчета [1–3] были получены закономерности, представленные на рис. 2.

Так как на карьерах песчано-гравийных пород Центрального региона коэффициент вскрыши в основном составляет около 0,5, была проанализирована возможность развития самотечного транспортирования в зависимости от коэффициента вскрыши. Установлена зависимость максимального геодезического уклона от коэффициента вскрыши (при наличии в бортах карьера пород с различной фильтруемостью) (рис. 3).

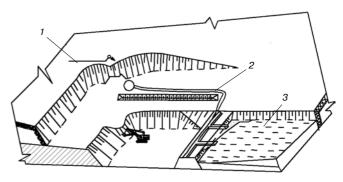


Рис. 1. Схема организации самотечного гидротранспортирования вскрышных пород: 1 — гидромонитор; 2 — трубопровод; 3 — гидроотвал

Параметры самотечных ус	тановок
-------------------------	---------

	Породы											
Расход воды на размыв породы, м ³ /м ³	СГ	СП	СГ	СП	СГ	СП	СГ	СП	СГ	СП	СГ	СП
	Диаметр трубопровода, м											
	0,25		0,3		0,35		0,4		0,45		0,5	
	Фактический перепад отметок на 100 м длины трубопровода, м											
5	2,31	3,61	2,1	3,04	2,2	2,64	2,46	2,74	2,1	2,62	2,16	3,22
8	2,16	3,37	1,96	2,84	2,04	2,46	2,3	2,56	1,96	2,45	2,02	3,01
10	2,0	3,13	1,82	2,64	1,9	2,29	2,13	2,38	1,82	2,27	1,87	2,79
12	1,85	2,89	1,68	2,44	1,75	2,11	1,97	2,2	1,68	2,1	1,73	2,58
Примечание. CГ — суглинок, СП — супесь.												

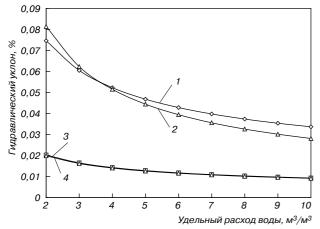


Рис. 2. Зависимость критического гидравлического уклона от удельного расхода воды:

I — по методике ВНИИГ; 2 — по методике В. И. Шелоганова, В. С. Кнороза, П. Д. Евдокимова соответственно

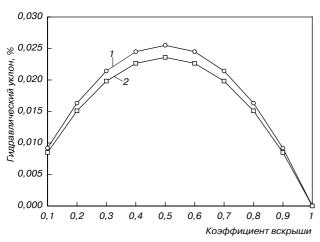


Рис. 3. Зависимость гидравлического уклона от коэффициента вскрыши при наличии в бортах карьера пород с низкой (I) и высокой (2) фильтруемостью

Согласно расчету, при наличии вскрышных пород в виде высокоглинистых отложений и коэффициенте вскрыши до 0,5 м³/м³ дальность самотечного транспортирования не должна превышать 2 тыс. м, при смыве суглинков — не свыше 1,5 тыс. м, при наличии во вскрышных породах тонкозернистых и пылевидных отложений — не более 1 тыс. м.

Вышеуказанные рекомендации показывают возможность организации опережающих вскрышных работ и опровергают существующее мнение о технологической жесткости параметров гидравлических систем разработки.

Список литературы

- 1. *Нурок Г. А.* Процессы и технологии гидромеханизации открытых горных работ. М.: Недра, 1985.
- 2. Юфин А. П. Гидромеханизация. Учебник для вузов. М.: Изд-во литературы по строительству, 1965.

E-mail: popova1982@rambler.ru

STUDY OF PARAMETERS OF SELF-FLOWING HYDRO-TRANSPORTATION OF OPENING ROCKS IN BOULDER-GRAVEL SAND QUARRIES

Popova Yu. A.

Main features of the technology of hydraulic opening works in boulder-gravel sand quarries are presented. These quarries have possibilities for creation of self-flowing hydro-transportation in jetting. Recommended parameters of hy-dromachines are given.

Key words: specific water consumption, self-flowing hydro-transportation, hy-draulic inclination, monitor, opening ratio.