ABROAD | |
Название | Upon platinum group metals recovery from Cuban oxide nickel ores |
Автор | Petrov G. V., Boduen A. Ya., Bazhin V. Yu., Fokina S. B. |
Информация об авторе | National mineral resources university (Russia): Petrov G. V., Professor, Doctor of Engineering, petroffg@yandex.ru |
Реферат | Cuba possesses considerable world reserves of nickel ores with diagnostically proven content of platinum-group metals, permitting to consider by-product concentration of platinum metals economically feasible in nickel production. Cuba ranks among the countries with the largest nickel ores deposits and the world leaders in nickel production. Cuban nickel ores and concentrates are characterized, and the ore processing technologies are described. Total platinum metals grade of the most commonly encountered oxide iron-nickel ores in Cuba is 0.2 gr/t on the average. The Cuban ore-dressing facilities employ two hydrometallurgical technologies: autoclave sulfuric-acid (Pedro Soto Alba plant) and ammonium-carbonate (Er. Che Gueavara and Rene Ramos Latour plants). The main marketable product of Pedro Soto Alba plant is sulfide nickel-cobalt concentrate. Platinum metals grade of this concentrate varies from 2 to 6 gr/t. The plants that employ the ammonium flow sheet, produce a not too large quantity of sulfide nickel-cobalt concentrate, and noble metals content in this concentrate does not exceed 3 % from the content in ore. On the basis of the literature references studies, it is supposed that the prevailing part (over 95 %) of platinum metals remain in ammonia leaching tailings at Er. Che Gueavara and Rene Ramos Latour plants. A conclusion is made that from the viewpoint of platinum metals recovery, Pedro Sоto Alba plant sulfide concentrate is more promising. |
Ключевые слова | Oxide nickel ores, concentration, sulfide nickel-cobalt concentrate, platinum-group metals, platinum metals concentrates |
Библиографический список | 1. Petrov G. V., Bazhin V. Yu., Nikolaev A. K., Boduen A. Ya. Tsvetnayа Metallurgiya — Non-ferrous Metallurgy, 2012, No. 1, pp. 32–37. |
Language of full-text | русский |
Полный текст статьи | Получить |