Journals →  Materialy Elektronnoi Tekhniki →  2013 →  #2 →  Back

NANOMATERIALS AND NANOTECHNOLOGY
ArticleName About the Temperature Dependence of Photoluminescence of Silicon Quantum Dots
ArticleAuthor S. N. Nagornykh, V. I. Pavlenkov, A. N. Mikhaylov, A. I. Belov, V. A. Burdov, L. V. Krasilnikova, D. I. Kryzhkov, D. I. Tetelbaum
ArticleAuthorData

Physico−Technical Research Institute of Lobachevsky State University of Nizhni Novgorod:

S. N. Nagornykh

V. I. Pavlenkov

A. N. Mikhaylov
A. I. Belov

V. A. Burdov

D. I. Tetelbaum

 

Institute for Physics of Microstructures RAS:

L. V. Krasilnikova
D. I. Kryzhkov

Abstract

A model of radiative and nonradiative transitions in silicon quantum dots is presented that describes the temperature dependence of photoluminescence of ion−synthesized ensembles of Si nanocrystals in SiO2. The four−level scheme of transitions is considered taking into account thermally activated processes and exchange splitting of the ground state of excited exciton to triplet and singlet sublevels, transitions from which are responsible for the luminescence. The expression for temperature dependence of the monochromatic photoluminescence components that is in agreement with a number of analogous dependencies from literature is derived on the basis of solution of a system of kinetic equations. The obtained expression describes adequately experimental results of the given work and allows to determine the splitting value for the exciton state in dependence on the energy of emitted photons, i.e. the nanocrystal size.

keywords Silicon, ion implantation, nanocrystal, quantum dot, photoluminescence, temperature dependence, scheme of electronic transitions
References

1. Silicon nanocrystals: fundamentals, synthesis and applications / Ed. by L. Pavesi, R. Turan. − Weinheim: WILEY−VCH Verlag GmbH & Co. KGaA, 2010. − 613 p.
2. Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers / L. T. Canham // Appl. Phys. Lett. − 1990. − V. 57, N 10. − P.1046—1048.
3. Heitmann, J. Excitons in Si nanocrystals: confinement and migration effects / J. Heitmann, F. Muller, L. Yi, M. Zacharias, D. Kovalev, F. Eichhorn // Phys. Rev. B. − 2004. − V. 69. − P. 195309.
4. Kobitski, A. Yu. Self−trapped exciton recombination in silicon nanocrystals / A. Yu. Kobitski, K. S. Zhuravlev, H. P. Wagner, D. R. T. Zahn // Ibid. − 2001. − V. 63. − P. 115423.
5. Allan, G. Nature of luminescent surface states of semiconductor nanocrystallites / G. Allan, C. Delerue, M. Lannoo // Phys. Rev. Lett. − 1996. − V. 76, N 16. − P. 2961—2964.
6. Calcott, P. D. J. Identification of radiative transitions in highly porous silicon / P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, D. Brumhead // J. Phys: Condens. Matter. − 1993. − V. 5. − P. L91—L98.
7. Burdov, V. A. Zavisimost' shiriny opticheskoy shcheli kremnievykh kvantovykh tochek ot ikh razmera / V. A. Burdov // FTP. − 2002. − T. 36, № 10. − S. 1233—1236.
8. Delerue, C. Theoretical aspects of the luminescence of porous silicon / C. Delerue, G. Allan, M. Lannoo // Phys. Rev. B. − 1993. − V. 48, N 15. − P. 11024—11036.
9. Wang, J. Thermal activation energy of crystal and amorphous nano−silicon in SiO2 matrix / J. Wang, M. Righini, A. Gnoli, S. Foss, T. Finstad, U. Serincan, R. Turan // Solid State Communications. − 2008. − V. 147. − P. 461—464.
10. Kapoor, M. Origin of the anomalous temperature dependence of luminescence in semiconductor nanocrystallites / M. Kapoor, V. A. Singh, G. K. Johri // Phys. Rev. B. − 2005. − V. 72. − P. 195313
11. Tetelbaum, D. I. Influence of the nature of oxide matrix on the photoluminescence spectrum of ion−synthesized silicon nanostructures / D. I. Tetelbaum, O. N. Gorshkov, A. V. Ershov, A. P. Kasatkin, V. A. Kamin, A. N. Mikhaylov, A. I. Belov, D. M. Gaponova, L. Pavesi, L. Ferraioli, T. G. Finstad, S. Foss // Thin Solid Films. − 2006. − V. 515, N.1−2. − S. 333—337.
12. Wang, Y. Q. The effect of implantation dose on the microstructure of silicon nanocrystals in SiO2 / Y. Q. Wang, R. Smirani, G. G. Ross // Nanotechnology. − 2004. − V. 15. − P. 1554—1560.
13. Mott, N. F. Silicon dioxide and the chalcogenide semiconductors; similarities and differences / N. F. Mott // Adv. Phys. − 1977. − V. 26, N 4. − S. 363—391.
14. Fernandez, B. G. Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2 / B. G. Fernandez, M. Lopez, C. Garcia, A. Perez−Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie // J. Appl. Phys. − 2002. − V. 91, N 2. − P. 798—807.
15. Tetel'baum, D. I. O vliyanii protsessa koalestsentsii i kharaktera iskhodnogo oksida na fotolyuminestsentsiyu ionno−sintezirovannykh nanokristallov Si v SiO2 / D. I. Tetel'baum, O. N. Gorshkov, A. P. Kasatkin, A. N. Mikhaylov, A. I. Belov, D. M. Gaponova, S. V. Morozov // FTT. − 2005. − T. 47, № 1. − S. 17—21.

Language of full-text russian
Full content Buy
Back