Journals →  Tsvetnye Metally →  2014 →  #7 →  Back

METAL PROCESSING
ArticleName Barothermography of phase transformations and structure of hypereutectic alloy Al – 16% (atm) Si
ArticleAuthor Dedyaeva E. V., Akopyan T. K., Padalko A. G., Fedotov V. T.
ArticleAuthorData

A. A. Baikov Institute of Metallurgy and Materials Science, Moscow, Russia:

E. V. Dedyaeva, Post-Graduate Student
T. K. Akopyan, Acting Junior Researcher, e-mail: aktorgom@gmail.com
A. G. Padalko, Head of Laboratory

 

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia:
V. T. Fedotov, Senior Researcher

Abstract

There was carried out the differential barothermal analysis of phase transformations in Al – 16 Si alloy at argon pressure of 100 MPa and at the temperature of up to 700 oС. The differential barothermal analysis technique combines HIP apparatus (HIRP 20/70-200-2000 (ABRA) isostatic press) and classical differential thermal analysis. For the purpose of phase equilibria study, differential thermal analysis cell is located in high-pressure vessel of isostatic press. Measurements were carried out at linear heating and cooling rates of 8 K/min, which were maintained by isostatic press apparatus. Two thermal effects were identified on heating barothermogram. The first peak was determined with aluminum-silicon eutectic melting process. This started process was equal to 582 oС, which exceeded eutectic melting temperature under atmospheric pressure by 5 oС. In this case, apparently, increasing of eutectic melting temperature is explained by baric coefficients of melting temperature of pure Al, which is ~6,5·10–2 К/МPa. Microstructure of the alloy, solidified at 100 MPa, is significantly coarsened in comparison with initial alloy. Microstructure changes of alloy constituents were determined by slow cooling rate, based on conditions of barothermal experiment. Silicon particles substantially have acicular morphology with inclusions' length of 1000 μm and needles' cross-section of 10 μm. There was defined that microhardness (Al) after differential barothermal analysis is increased by 17%, in comparison with initial state

keywords Differential barothermal analysis, phase transformations, silumins, eutectic, phase diagram, hot isostatic pressing, microstructure, solidification
References

1. Prigunova A. G., Belov N. A., Taran Yu. N., Zolotorevskiy V. S., Napalkov V. I., Petrov S. S. Siluminy. Atlas mikrostruktur i fraktogramm (Silumines. Atlas of microstructures and fractograms). Moscow : MISiS, 1996. 175 p.
2. Westerlund J., Vimercati A. Four Decades of HIP Progress. Metal Powder Report. 2000. Vol. 55, No. 2. pp. 14–21.
3. Padalko A. G. Praktika goryachego izostaticheskogo presso vaniya neorganicheskikh materialov (Practice of hot isostatic pressing of inorganic materials). Moscow : Akademkniga, 2007. 267 p.
4. Murray J. L., McAlister A. J. The Al-Si (Aluminum-Silicon) System. Bulletin of Alloy Phase Diagrams. 1984. Vol. 5, No. 1. pp. 74-84.
5. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem : spravochnik : v trekh tomakh (Diagrams of status of double metallic systems : reference book : in three volumes). Under the editorship of N. P. Lyakishev. Moscow : Mashinostroenie, 1996.
6. Kablov E. N., Golubovskiy E. R. Zharoprochnost nikelevykh splavov (Heat-resistance of nickel alloys). Moscow : Mashinostroenie, 2005. 464 p.
7. Fujishiro I., Mii H., Senoo M., Akao M. High Pressure Phase Diagram of Al-Si System. Journal of the Society of Materials Science (Japan). 1971. No. 20. pp. 952–955.
8. Mii H., Senoo M., Fujishiro I. Solid Solubility of Si in Al Under High Pressure. Japanese Journal of Applied Physics. 1976. No. 15. pp. 777–783.
9. Padalko A. G., Veselov A. N., Avduhin S. P., Nipan G. D., Sanygin V. P. Differential Barothermal Analysis (DBA) of Ni-base Alloys. J. Thermal Analysis and Calorimetry. 2003. Vol. 72, No. 3. pp. 791–797.
10. Padalko A. G., Belov N. A., Veselov A. N., Talanova G. V. Metally — Metals. 2009. No. 1. pp. 73–78.
11. Padalko A.G., Talanova G. V., Zubarev G. I., Fedotov V. T., Suchkov A. N., Tsarev V. I. Metally — Metals. 2011. No. 2. pp. 3–9.
12. Padalko A. G., Talanova G. V., Ponomareva E. Yu., Talyat-Kelpsh V. V., Shvorneva L. I., Zubarev G. I., Fedotov V. T., Suchkov A. N., Baklan V. A. Metally — Metals. 2012. No. 5. pp. 46–53.
13. Padalko A. G., Talanova G. V., Ponomareva E. Yu., Talyat-Kelpsh V. V., Shvorneva L. I., Zubarev G. I., Fedotov V. T., Suchkov A. N., Baklan V. A. Neorganicheskie materialy — Inorganic materials. 2012. Vol. 48, No. 6. pp. 647–680.
14. Tonkov E. Yu. Fazovye prevrashcheniya soedineniy pri vysokom davlenii (Phase transformations of compounds with high pressure). Moscow : Metallurgiya, 1988. Vol. 1/2. 791 p.
15. Dobatkin V. I., Elagin V. I. Granuliruemye alyuminievye splavy (Granulated aluminium alloys). Moscow : Metallurgiya, 1981. 176 p.
16. Belov N. A., Savchenko S. V., Khvan A. V. Fazovyy sostav i struktura siluminov : spravochnoe izdanie (Phase composition and structure of silumines : reference book). Moscow : MISiS, 2008. 283 p.
17. Svoystva alyuminiya (Aluminium properties). Spravochnik po tsvetnym metallam (Reference book on non-ferrous metals). Available at: http://www.libmetal.ru/al/al%20prop.htm.

Language of full-text russian
Full content Buy
Back