Название |
Concentrating plant processing section modeling in MatLAB
package |
Реферат |
Available software programs for modeling crushing, grinding and screening processes at concentrating plants (Bruno, USIM PAC, JKSimMet, MODSIM) are briefly characterized. Their advantages and drawbacks are noted. A method is proposed, permitting, by means of a small effort, to create adequate models of processing section circuits, distinguished by a presence of one main flow of processed material. The method is based on approximate identification of apparatuses and their elements by means of transfer function segments of the first order with a delay and a subsequent more precise definition through a statistical object identification with respect to residence time and delays relationship to main and auxiliary flows’ parameters. A potassium concentrating plant granulation section model was built, representing a sufficient precision of modeling. The model error, checked by means of the existing operation trends, amounted to 0.5 % in stationary mode for yield and did not exceed 4.7 % for all internal loops of the section. Relationships between main equipment loading and flow parameters deviation from designed values were studied, permitting to give recommendations for re-designing. |
Библиографический список |
1. Dolgov O., Dolgova I. Modeling of dynamic interaction of technological loading with elastic elements of sifting surfaces in mining and ore-dressing equipment. Technical and Geoinformational Systems in Mining. School of Underground Mining 2011. London, Taylor & Francis Group, 2011, pp. 99–103.
2. Tikhonov O. N. Zakonomernosti effectivnogo razdeleniya mineralov v protsessakh obogashcheniya poleznykh iskopayemykh (Regularities of effective separation of minerals in beneficiation processes). Moscow, Nedra, 1984, 208 p. 3. Junzhi C., Chunfang R., Feng T. The optimization of mining areas and ore dressing plants match in Yunnari Tin regional mine. Information Science and Management Engineering, 2010, WIT Press, pp. 385–393. 4. Ayres R., Mendez G. Materials balance models. Research tools in natural resource and environmental economics. World Scientific Publishind Ltd, 2011, pp. 407–421. 5. Klyushnikov O. M. Issledovaniye zakonomernostey i razrabotka tekhnologii vyshchelachivaniya uranovykh rud Dalmatovskogo mestorozhdeniya s ispolzovaniyem azotistokislogo natriya. Avtoreferat dissertatsii ... kandidata tekhnicheskikh nauk (Research of regularities and the development of Dalmatovsky field uranium ore leaching technology using sodium nitrite. Author's abstract of Ph. D. dissertation). Yekaterinburg, 2013, 23 p. 6. RD50-34.698. Avtomatizirovannyye sistemy. Trebovaniya k soderzhaniyu dokumentov (Automated systems. Requirements for the content of documents). 7. Bruno: Metso’s simulating tool. URL: http://www.metso.com/miningandconstruction/mm_segments.nsf/WebWID/WTB-081113-2256F-FD63A/$File/Bruno_presentation.pdf. 8. Hammalainen E. Program Bruno: accurate modeling process. Zhurnal Sovremennykh Stroitelnykh Tekhnologiy «Krasnaya Liniya»: Nerudnaya Promyshlennost = The Red Line. Non-Metallic Industry Magazine, 2011, No. 51, pp. 26–27. 9. USIM PAC. Powerful process simulator. URL: http://www.caspeo.net/USIMPAC. 10. Toebermann J.-Chr., Rosenkranz J., Werther J., Gruhn G. Block-oriented process simulation of solids processes. Computers and Chemical Engineering, 2000, No. 23, pp. 1773 – 1782. 11. Plan zakupok tovarov, rabot i uslug ТОО «Institut vysokikh tekhnologiy» na 2013 god (Plan of goods, works and services procurement by Institute of High Technologies for 2013). URL: kazatomprom.kz/sites/default/files/purchases/plan/План_1_Новая версия.xlsx. 12. JKSimMet. Simulation of comminution and classification circuits – integrating all tasks within one package. URL: http://www.jktech.com.au/jksimmet. 13. Role of simulation software in design and operation of metallurgical plants: a case study. URL: http://www.andritz.com/ja/aa-automation-simulation-metallurgical-plants.pdf. 14. Мodular simulator for mineral processing plants. URL: http://www.mineraltech.com/MODSIM/. 15. List of chemical process simulators. URL: http://en.wikipedia.org/wiki/List_of_chemical_process_simulators. 16. Kirilin M. V., Kholodnov V. A., Ivakhnyuk G. K. Mathematical description of the furnace incineration as a control object. Izvestia Vysshikh Uchebnykh Zavedeniy. Khimia i Khimicheskaya Tekhnologia, 2004, Vol. 47, No. 2, pp. 123–125. 17. Kirin Yu. A., Zatonskiy A. V., Bekker V. F., Krayev C. L. Identification of technological processes of titanium sponge production. Problemy Upravleniya = Control Sciences, 2008, No. 4, pp. 71–77. 18. Bilfeld N. V. Program of control systems dynamics research. Programmnye Produkty i Sistemy, 2010, No. 12, pp. 118–124. 19. Tu S. Fiziko-khimicheskiye osnovy kombinirovannogo sposoba pererabotki sulfidnogo mednogo kontsentrata Udokanskogo mestorozhdeniya. Avtoreferat dissertatsii... kandidata tekhnicheskikh nauk (Physico-chemical basis of the combined method of Udokan sulphide copper concentrate processing. Author's abstract of Ph. D. dissertation). Moscow, 2011, 26 p. 20. Yerypalova M. N. Upravleniye protsessom vakuumnoy separatsii gubchatogo titana. Avtoreferat dissertatsii... kandidata tekhnicheskikh nauk (Managing of titanium sponge vacuum separation process. Author's abstract of Ph. D. dissertation). Vladimir, 2011. 20 p. 21. Bilfeld N. V. Using passive experiment in the identification of control objects with varying properties. Molodoy Uchenyy = Young Scientist, 2013, No. 8, pp. 77–82. 22. Baskakov A. P., Lukachevskiy I. P., Mukhlenov I. P. Raschety apparatov kipyashchego sloya (Сalculations of fluidized bed devices). Leningrad, Khimiya, 1986, 352 p. |