Журналы →  Gornyi Zhurnal →  2015 →  №10 →  Назад

PROBLEMS OF RADIOACTIVE WASTE DISPOSAL
Название Integral code GeRa for radioactive waste disposal safety validation
DOI 10.17580/gzh.2015.10.08
Автор Kapyrin I. V., Ivanov V. A., Kopytov G. V., Utkin S. S.
Информация об авторе

Author 1:
Name & Surname: Kapyrin I. V.
Company: Institute of Problems of Safe Nuclear Power Development, Russian Academy of Sciences
Work Position: Head of Laboratory
Scientific Degree: Candidate of Physico-Mathematical Sciences
Contacts: kapyrin@ibrae.ac.ru

 

Author 2:
Name & Surname: Ivanov V. A.
Company: Institute of Problems of Safe Nuclear Power Development, Russian Academy of Sciences
Work Position: Junior Researcher


Author 3:
Name & Surname: Kopytov G. V.
Company: Immanuel Kant Baltic Federal University (Kaliningrad, Russia)
Work Position: Head of Department
Scientific Degree: Candidate of Physico-Mathematical Sciences


Author 4:
Name & Surname: Utkin S. S.
Company: Institute of Problems of Safe Nuclear Power Development, Russian Academy of Sciences
Work Position: Head of Department
Scientific Degree: Candidate of Physico-Mathematical Sciences

Реферат

The paper addresses the topical issue related with total long-term safety of underground disposal of radioactive waste (RAW and high-level waste (HLW). The authors present the new computation code GeRa, developed at the Institute of Problems of Safe Nuclear Power Development RAS jointly with other institutions engaged in the given research area, for modeling geo-percolation and geo-migration of radionuclides in rock masses planed for RAW disposal and isolation. Code GeRA is an integral code allowing overall estimation of RAW disposal safety—starting from the models of percolation, transmission, chemical interaction, convection, sorption, radioactive decay etc. and finishing with the calculation of radiation exposure of people when using water from underground sources that occur on migration ways of radionuclides. The code includes options for modeling: intense percolation in pressure and no pressure formulations, intense–not intense percolation, advective–diffusion–dispersion transport considering radioactive decay; equilibrium sorption by isotherm, including variable distribution factor Kd; transport with detail calculation of chemical interactions in water–rock system using module PHREEQC; convection. The structure and capacity of computation code GeRa are illustrated using the model of a regional RAW disposal project in the Northwestern region of Russia. Furthermore, the authors present MSPP software platform, designed in the framework of GeRa architecture, for concurrent operation with grids, data and systems of linear equations. By the authors’ estimates, GeRa code and its infrastructural support are equal to its foreign analogs of the present day and in some aspects even exceed them. The current studies aim at expansion of modeling range, and verification and cross-verification of the code. GeRa code is placed under use test at the National Operator for Radioactive Waste Management and has passed testing at Lomonosov Moscow State University. It is planned to obtain the state certification of the code.

Ключевые слова RAW disposal, long-term safety, geo-migration of radionuclides, groundwater, computational code GeRa, software support, regional repository, visualization, verification
Библиографический список

1. Kapyrin I. V., Utkin S. S., Vasilevskiy Yu. V. Kontseptsiya razrabotki i ispolzovaniya raschetnogo kompleksa GeRa dlya obosnovaniya bezopasnosti punktov zakhoroneniya radioaktivnykh otkhodov (Concept of development and use of calculation complex GeRa for substantiation of safety of radioactive waste disposal places). Vestnik atomnoy nauki i tekhniki. Seriya «Matematicheskoe modelirovanie fizicheskikh protsessov» = Bulletin of atomic science and technology. Series «Mathematical modelling of physical processes». 2014. No. 4. pp. 44–54.
2. Parkhurst D. L., Appelo C. A. J. Users’ guide to PHREEQC — a computer program for speciation, reaction-path, 1D-transport and inverse geochemical calculations. US Geological Survey Water Resources Investigations Report. 1999. 326 p.
3. Panday S., Langevin C. D., Niswonger R. G., Ibaraki M., Hughes J. D. MODFLOW-USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. U.S. Geological Survey Techniques and Methods. 2013. Book 6, Chap. A45. 66 p.
4. ASCEM Phase I Demonstration, US DOE. 2010. 71 p.
5. Hammond G. E., Lichtner P. C., Mills R. T. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN. Water resources research. 2014. Vol. 50, No. 1. pp. 208–228.
6. Otsenka vliyaniya atomno-promyshlennogo kompleksa na podzemnye vody i smezhnye prirodnye obekty (gorod Sosnovyy Bor Leningradskoy oblasti) (Assessment of influence of atomic-industrial complex on underground waters and adjoining natural objects (Sosnovy Bor (Leningrad oblast)). Under the editorship of V. G. Rumynin. Saint Petersburg: Publishing House of Saint-Petersburg University, 2002. 208 p.
7. Materialy otsenki vozdeystviya na okruzhayushchuyu sredu pri razmeshchenii pripoverkhnostnogo punkta zakhoroneniya radioaktivnykh otkhodov nizkogo i srednego urovney aktivnosti v rayone Leningradskogo otdeleniya filiala Severo-Zapadnogo territorialnogo okruga Federalnogo Gosudarstvennogo Unitarnogo Predpriyatiya «RosRAO» (Materials of assessment of influence on environment during the placing of near-surface point of low and average level radioactive waste disposal in the region of Leningrad department of the branch of North-Western territorial district of “RosRAO” enterprise). Moscow : Rosatom, 2012. 266 p. Available at: http://www.bellona.ru/files/fil_pril_n_01.pdf (accessed: September 15, 2015). (in Russian)
8. Demyanov V. V., Saveleva E. A. Geostatistika. Teoriya i praktika (Geostatistics. Theory and practice). Moscow : Nauka, 2010.
9. Chernyshenko A. Yu. Postroenie setok tipa vosmerichnoe derevo so skolotymi yacheykami v neodnorodnykh oblastyakh (Generation of octree meshes with cut cells in multiple material domains). Vychislitelnye metody i programmirovanie = Numerical methods and programming. 2013. Vol. 14. pp. 229–245.
10. Aavatsmark I. Interpretation of a two-point flux stencil for skew parallelogram grids. Computational Geosciences. 2007. Vol. 11. pp. 199–206.
11. Danilov A., Vassilevski Yu. A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russian Journal of Numerical Analysis and Mathematical Modelling. 2009. Vol. 24, No. 3. pp. 207–227.
12. Kapyrin I., Nikitin K., Terekhov K., Vassilevski Yu. Nonlinear Monotone FV Schemes for Radionuclide Geomigration and Multiphase Flow Models. Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer International Publishing, 2014. pp. 655–663.
13. Vasilevskiy Yu. V., Konshin I. N., Kopytov G. V., Terekhov K. M. INMOST – programmnaya platforma i graficheskaya sreda dlya razrabotki parallelnykh chislennykh modeley na setkakh obshchego vida (INMOST — a software platform and graphics envirronment for developing parallel numerical models on common type meshes). Moscow : Publishing House of Moscow University, 2013. 144 p.
14. INMOST. A toolkit for distributed mathematical modelin. Available at: www.inmost.org (accessed: September 15, 2015).

Language of full-text русский
Полный текст статьи Получить
Назад