References |
1. Krasnyanskiy G. L. Slantsevaya revolyutsiya i rossiyskiy ugol (Shale revolution and Russian coal). Rossiyskaya gazeta – federalnyy vypusk = Russian newspaper – federal issue. No. 5993(17). 2. Kozhukhovskiy I. S. Perspektivy razvitiya ugolnoy energetiki Rossii (Development prospects of Russian coal energy). Energetik = Power & Electrical engineering. 2013. No. 1. 3. Karacan C. O., Ruiz F. A., Cote M., Phipps S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. International Journal of Coal Geology. 2011. Vol. 86. pp. 121–156. 4. Zhou F., Xia T., Wang X., Zhang Y., Sun Y., Liu J. Recent developments of coal mine methane extraction and utilization in China. Journal of Natural Gas Science & Engineering. 2016. DOI: 10.1016/j.jngse.2016.03.027. 5. U.S. EPA, 2012. Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2030. US Environmental Protection Agency. 6. Dougherty H. N., Karacan C. O. A new methane control and prediction software suite for longwall mines. Computers & Geosciences. 2011. Vol. 37. pp. 1490–1500. 7. Karacan C. О. Modeling and prediction of ventilation methane emissions of U.S. Longwall mines using supervised artificial neural networks. International Journal of Coal Geology. 2008. Vol. 73. pp. 371–387. 8. Imgrund T., Shalashinskiy A. Napravlennoe burenie — novaya tekhnologiya dlya povysheniya effektivnosti predvaritelnoy degazatsii v rossiyskikh ugolnykh shakhtakh (Directed drilling — a new technology for increasing the preliminary degassing efficiency in Russian coal mines). Glyukauf mayning report = Mining Report Glückauf. 2015. No. 1. pp. 16–19. 9. Clarkson C. R. Production data analysis of unconventional gas wells: Review of theory and best practices. International Journal of Coal Geology. 2013. Vol. 109–110. pp. 101–146.
10. Liu Y., Xia B., Liu X. A Novel Method of Orienting Hydraulic Fractures in Coal Mines and Its Mechanism of Intensifi ed Conduction. Journal of Natural Gas Science & Engineering. 2015. DOI: 10.1016/j.jngse.2015.08.054. 11. Song D., Liu Z., Wang E., Qiu L., Gao Q., Xu Z. Evaluation of coal seam hydraulic fracturing using the direct current method. International Journal of Rock Mechanics & Mining Sciences. 2015. Vol. 78. pp. 230–239. 12. Tingkan L., Hong Y., Tingyang Z., Jushen M., Baohua G. Improvement of methane drainage in high gassy coal seam using waterjet technique. International Journal of Coal Geology. 2009. Vol. 79. pp. 40–48. 13. Ihsan Hamawand, Talal Yusaf, Sara G. Hamawand. Coal seam gas and associated water: A review paper. Renewable and Sustainable Energy Reviews. 2013. Vol. 22. pp. 550–560. 14. Sechman H., Kotarba M. J., Fiszer J., Dzieniewicz M. Distribution of methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization at the abandoned «Nowa Ruda» coal mine (Lower Silesian Coal Basin, SW Poland). International Journal of Coal Geology. 2013. Vol. 116–117. pp 1–16. 15. Fowkes N., Hocking G., Mason D. P., Please C. P., Kgatle R., Yilmaz H., vander Merwe N. Models for the effect of rising water in abandoned mines on seismic activity. International Journal of Rock Mechanics & Mining Sciences. 2015. Vol. 77. pp. 246–256. 16. Pingjia L., Ning C. Abandoned coal mine tunnels: Future heating/power supply centers. Mining Science and Technology (China). 2011. Vol. 21. pp. 637–640. 17. Kachurin N. M., Efimov V. I., Vorobev S. A., Shkuratckiy D. N. Evaluating of closed mines mining lease territories environmental safety by gas factor. Eurasian mining. 2014. No. 2. pp. 41–44. 18. Kachurin N. M., Vorobev S. A., Korchagina T. V., Sidorov R. V. Scientific and practical results of monitoring of anthropogenic influence on mining-industrial territories environment. Eurasian mining. 2014. No. 2. pp. 44–48 19. United Nations, 2010. Best practice guidance for effective methane drainage and use in coal mines. Economic Commission for Europe Methane to Markets Partnership: ECE Energy Series, 31. 20. Baris K. Assessing ventilation air methane (VAM) mitigation and utilization opportunities: A case study at Kozlu Mine, Turkey. Energy for Sustainable Development. 2013. Vol. 17. pp. 13–23. 21. Gosiewski K. et al. Energy recovery from ventilation air methane via reverse-flow reactors, Energy. 2015. http://dx.doi.org/10.1016/j.energy.2015.06.004. 22. Cluff D. L., Kennedy G. A., Bennett J. G., Foster P. J. Capturing energy from ventilation air methane a preliminary design for a new approach. Applied Thermal Engineering. 2015. DOI: 10.1016/j. applthermaleng.2015.05.013. 23. Li Q., Lin B., Yuan D., Chen G. Demonstration and its validation for ventilation air methane (VAM) thermal oxidation and energy recovery project. Applied Thermal Engineering. 2015. DOI: 10.1016/j.applthermaleng.2015.06.089. 24. Uszko M. Monitoring of methane and rockburst hazards as a condition of safe coal exploitation in the mines of Kompania Węglowa SA. Procedia Earth and Planetary Science 1. 2009. pp. 54– 59. 25. Junjie Chen, Deguang Xu. Ventilation Air Methane of Coal Mines as the Sustainable Energy Source. American Journal of Mining and Metallurgy. 2015. Vol. 3, No. 1. pp. 1–8. 26. Moore T. A. Coalbed methane: A review. International Journal of Coal Geology. 2012. Vol. 101. pp. 36–81. 27. Kai Wang, Gongda Wang, Ting Renb, Yuanping Cheng. Methane and CO2 sorption hysteresis on coal: A critical review. International Journal of Coal Geology. 2014. Vol. 132. pp. 60–80. 28. Ji-Quan Shi, Sevket Durucan, Sohei Shimada. How gas adsorption and swelling aff ects permeability of coal: A new modelling approach for analysing laboratory test data. International Journal of Coal Geology. 2014. Vol. 128–129. pp. 134–142. 29. Shu Tao, Yanbin Wang, Dazhen Tang, Hao Xu, Yumin Lv, Wei He, Yong Li. Dynamic variation effects of coal permeability during the coalbed methane development process in the Qinshui Basin, China. International Journal of Coal Geology. 2012. Vol. 93. pp. 16–22. 30. Yu Wu, Jishan Liu, Derek Elsworth, Xiexing Miao, Xianbiao Mao. Development of anisotropic permeability during coalbed methane production. Journal of Natural Gas Science and Engineering. 2010. No. 2. pp. 197–210. 31. Sakurovs R., Day S., Weir S., Duffy G. Temperature dependence of sorption of gases by coals and charcoals. International Journal of Coal Geology. 2008. Vol. 73. pp. 250–258. 32. Yongdong Jiang, Xiao Song, Hao Liu,Yuezhen Cui. Laboratory measurements of methane desorption on coal during acoustic stimulation. International Journal of Rock Mechanics & Mining Sciences. 2015. Vol. 78. pp. 10–18. 33. Palmer I. Coalbed methane completions: A world view. International Journal of Coal Geology. 2010. Vol. 82. pp. 184–195. 34. Kachurin N. M., Vorobev S. A., Kachurin A. N., Sarycheva I. V. Prognoz metanovydeleniya v podgotovitelnye i ochistnye zaboi ugolnykh shakht (Predication of methane-emission rate in development and production faces of coal mines). Obogashchenie Rud = Mineral processing. 2014. No. 6. pp. 16–19. 35. Zhejun Pan, Luke D. Connell. Modelling permeability for coal reservoirs: A review of analytical models and testing data. International Journal of Coal Geology. 2012. Vol. 92. pp. 1–44. 36. Yingchao Wang, Gang Luo, Fan Geng, Yabo Li, Yongliang Li. Numerical study on dust movement and dust distribution for hybrid ventilation system in a laneway of coal mine. Journal of Loss Prevention in the Process Industries. 2015. Vol. 36. pp. 146–157. 37. Jianwei Cheng, Yan Wu, Haiming Xu, Jin Liu, Yekang Yang, Huangjun Deng, Yi Wang. Comprehensive and Integrated Mine Ventilation Consultation Model — CIMVCM. Tunnelling and Underground Space Technology. 2015. Vol. 45. pp. 166–180. 38. Tongqiang Xia, Fubao Zhou, Jishan Liu, Shengyong Hu, Yingke Liu. A fully coupled coal deformation and compositional flow model for the control of the pre-mining coal seam gas extraction. International Journal of Rock Mechanics & Mining Sciences. 2014. Vol. 72. pp. 138–148. 39. Karacan C. O. Forecasting gob gas venthole production performances using intelligent computing methods for optimum methane control in longwall coal mines. International Journal of Coal Geology. 2009. Vol. 79. pp. 131–144. 40. Karacan C. O. Degasifi cation system selection for US longwall mines using an expert classifi cation system. Computers & Geosciences. 2009. Vol. 35. pp. 515–526. 41. Fengde Zhou, Guangqing Yao, Stephen Tyson. Impact of geological modeling processes on spatial coalbed methane resource estimation. International Journal of Coal Geology. 2015. Vol. 146. pp. 14–27. 42. Kachurin N. M., Vorobev S. A., Vasilev P. V., Bogdanov S. M. Perspektivy vosstanovleniya i kompleksnogo razvitiya Podmoskovnogo burougolnogo basseyna (Prospects of recovering and integrated development in Moscow lignite basin). Gornyi Zhurnal = Mining Journal. 2016. No. 2. pp. 30–35. 43. Stepanov C. G., Islamov S. R. Problemy proizvodstva zhidkogo topliva iz uglya (Problem ofn liquid fuel production from coal). Ugol = Russian Coal Journal. 2015. No. 7. pp. 50–53. 44. Haarlemmer G., Boissonnet G., Peduzzi E., Setier P.-A. Investment and production costs of synthetic fuels. Energy. 2014. Vol. 66. pp. 667–676. 45. Renzenbrinka W., Ewersa J., Kellera D., Wolfa K. J., Apelb W. RWE´s 450 MW IGCC/CCS Project — Status and Outlook. Energy Procedia. 2009. No. 1. pp. 615–622. 46. Gartner D. The Rhenish lignite-mining area in times of economic and ecological change. World of Mining — Surface & Underground Mining. 2015. Vol. 67, No. 3. pp. 166–185. 47. Elsen R. O., Overhoff U., Wolf K. J. Opportunities and chances of lignite beyond the electricity market. World of Mining. Surface & Underground Mining. 2015. Vol. 67, No. 4. pp. 246–255. 48. Bielowicz B., Kasiński J. R. The possibility of underground gasifi cation of lignite from Polish deposits. International Journal of Coal Geology. 2014. Vol. 131. pp. 304–318. 49. Wiatowski M., Stanczyk K., Swiadrowski J., Kapusta K., Cybulski K., Krause E., Grabowski J., Rogut J., Howaniec N., Smolinski A. Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine «Barbara». Fuel. 2012. Vol. 99. pp. 170–179. 50. Kapusta K., Stanczyk K., Wiatowski M., Checko J. Environmental aspects of a field-scale underground coal gasifi cation trial in a shallow coal seam at the Experimental Mine Barbara in Poland. Fuel. 2013. Vol. 113. pp. 196–208. 51. Wiatowski M. et al. Technological aspects of underground coal gasifi cation in the Experimental «Barbara» Mine. Fuel. 2015. Available at: http://dx.doi.org/10.1016/j.fuel.2015.07.001. 52. Abdul Waheed Bhutto, Aqeel Ahmed Bazmi, Gholamreza Zahedi. Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science. 2013. Vol. 39. pp. 189–214. 53. Kapusta K., Stanczyk K. Pollution of water during underground coal gasifi cation of hard coal and lignite. Fuel. 2011. Vol. 90. pp. 1927–1934. 54. Akbarzadeh H., Chalaturnyk R. J. Structural changes in coal at elevated temperature pertinent to underground coal gasification: A review. International Journal of Coal Geology. 2014. Vol. 131. pp. 126–146. 55. Ehsan Esmaili, Ehsan Mostafavi, Nader Mahinpey. Economic assessment of integrated coal gasifi cation combined cycle with sorbent CO2 capture. Applied Energy. 2016. Vol. 169. pp. 341– 352. 56. Karakurt I., Aydin G., Aydiner K. Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy. 2012. Vol. 39. pp. 40–48. 57. Kirchgessner D. A., Piccot S. D., Masemore S. S. An Improved Inventory of Methane Emissions from Coal Mining in the United States. Journal of the Air & Waste Management Association. 2000. 50:11, 1904-1919. DOI: 10.1080/10473289.2000.10464227. 58. Beamish B. B., Vance W. E. Greenhouse gas contributions from coal mining in Australia and New Zealand. Journal of the Royal Society of New Zealand. 1992. 22:2, 153-156. DOI: 10.1080/03036758.1992.10420812. 59. Ming Yang. Climate change and energy policies, coal and coal mine methane in China. Energy Policy. 2009. Vol. 37. pp. 2858–2869. 60. Baiquan Lin, Fazhi Yan, Chuanjie Zhu, Yan Zhou, Quanle Zou, Chang Guo, Ting Liu. Cross-borehole hydraulic slotting technique for preventing and controlling coal and gas outbursts during coal roadway excavation. Journal of Natural Gas Science and Engineering. 2015. Vol. 26. pp. 518–525. 61. Jian-Jun Wu, Xiao-Chen Liu. Risk assessment of underground coal fire development at regional scale. International Journal of Coal Geology. 2011. Vol. 86. pp. 87–94. 62. Nishant K. Srivastava, Lal C. Ram, R. Ebhin Masto. Reclamation of overburden and lowland in coal mining area with flyash and selective plantation: A sustainable ecological approach. Ecological Engineering. 2014. Vol. 71. pp. 479–489. 63. Harris T. M., Hottle T. A., Soratana K., Klane J., Landis A. E. Life Cycle Assessment of Sunflower Cultivation on Abandoned Mine Land for Biodiesel Production. Journal of Cleaner Production. 2015. DOI: 10.1016/j.jclepro.2015.09.057. 64. Hyun-Joo Oh, Saro Lee. Integration of ground subsidence hazard maps of abandoned coal mines in Samcheok, Korea. International Journal of Coal Geology. 2011. Vol. 86. pp. 58–72. 65. Hendryx M., Zullig K. J. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. Preventive Medicine. 2009. Vol. 49. pp. 355–359. 66. Mueller G. S., Clayton A. L., Zahnd W. E., Hollenbeck K. M., Barrowb M. E., Jenkins W. D., Ruez D. R. Jr. Geospatial analysis of Cancer risk and residential Proximity to coal mines in Illinois. Ecotoxicology and Environmental Safety. 2015. Vol. 120. pp. 155–162. 67. Liu A. Y., Curriero F. C., Glass T. A., Stewart W. F., Schwartz B. S. The contextual influence of coal abandoned minelands In communities and type 2 diabetes in Pennsylvania. Health & Place. 2013. Vol. 22. pp. 115–122.
68. Hendryx M., Entwhistle J. Association between residence near surface coal mining and blood inflammation. The Extractive Industries and Society. 2015. Vol. 2. pp. 246–251. 69. Gritsada Sua-Iam, Natt Makul. Utilization of coal- and biomass-fired ash in the production of selfconsolidating concrete: a literature review. Journal of Cleaner Production. 2015. Vol. 100. pp. 59–76. 70. Chang-Seon Shon, Youn su Jung, Don Saylak. Evaluation of synthetic aggregates using off-ASTM specification ashes as road base course materials. Construction and Building Materials. 2013. Vol. 38. pp. 508–514. 71. Singh M., Siddique R. Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling. 2013. Vol. 72. pp. 20–32. 72. Binay K. Dutta, Swapan Khanra, Durjoy Mallick. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines. Fuel. 2009. Vol. 88. pp. 1314–1323. 73. Arbuzov S. I., Rikhvanov L. P., Maslov S. G., Arhipov V. S., Belyaeva A. M. Anomalous gold contents in brown coals and peat in the south-eastern region of the Western-Siberian platform. International Journal of Coal Geology. 2006. Vol. 68. pp. 127–134. 74. Ribeiro J., Valentim B., Ward C., Flores D. Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact. International Journal of Coal Geology. 2011. Vol. 86. pp. 204–212. 75. Izquierdo M., Querol X. Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology. 2012. Vol. 94. pp. 54–66. 76. Shuming Wang, Caixing Zhang, Jundan Chen. Utilization of Coal Fly Ash for the Production of Glassceramics With Unique Performances: A Brief Review. Journal of Material Science and Technology. 2014. Vol. 30(12). pp. 1208–1212. 77. Lieberman R. N., Green U., Segev G., Polat M., Mastai Y., Cohen H. Coal fly ash as a potential fixation reagent for radioactive wastes. Fuel. 2015. Vol. 153. pp. 437–444. |