ArticleName |
Optimization of uranium peroxide precipitation |
ArticleAuthorData |
Institute of High Technologies, Kazatomprom, Almaty, Kazakhstan: M. P. Kopbaeva, Deputy Research Director, Candidate of Chemical Sciences E. N. Panova, Head of Department, Candidate of Chemical Sciences, e.panova@iht.kz N. A. Prinzin, Senior Researcher E. M. Karmanov, Senior Researcher |
Abstract |
In focus are the regular patterns in the behavior of marketable desorbent for uranium under peroxide precipitation. It is found that ferrum and phosphor go from pregnant solution to marketable desorbent. The remainder insoluble in nitric acid forms as desorbing solution is prepared from mother liquid containing polymeric compounds of silicic acid. The article shows that the remainder insoluble in nitric acid is a mixture of metasilicic acid gel, soddyite and epidote. It is found that ferrum, phosphorus and impurities that form the nitric acid-insoluble remainder settle down from the marketable desorbent at the stage of preliminary neutralization to pH = 4. In order that uranium peroxide conforms with the standards ASTM С967-08, it is necessary to settle and fi lter the pregnant solution before peroxide precipitation. The hydrolytic settle, after it has been washed and dissolved in acid, is to be added to the pregnant solution, which will bring uranium contained in the remainder back to the stage of adsorption. It is recommended to use demineralized water to prepare stripping solution, which will allow zero pollution of uranium peroxide with silica and calcium and zero loss of uranium in the form insoluble in nitric acid. The optimized mode experimentation on peroxide precipitation of uranium from marketable desorbent has allowed ferrum removal from the marketable desorbent by 100%, silica–by 86.54% and phosphorus—by 42.86%. The analysis of the resultant uranium peroxide yields complete consistency with ASTM C967-08 standards: ferrum and remainder insoluble in nitric acid are totally absent, and phosphorus content is 0.012%, i.e. 8 times below the threshold specified by STM C967-08. |
References |
1. Panfilov M., Uralbekov B., Burkitbayev M. Reactive transport in the underground leaching of uranium: Asymptotic analytical solution for multi-reaction model. Hydrometallurgy. 2016. Vol. 160. pp. 60–72. 2. Li Q.-C., Zhou J. Research on character of solute transport in in-situ leaching of uranium in sandstone uranium deposit. International Conference on Design, Manufacturing and Mechatronics (ICDMM). APR 17–18, 2015. pp. 1086–1094. 3. Polinovskiy K. D. Kompleksnyy podkhod k resheniyu problemy intensifi katsii protsessa podzemnogo skvazhinnogo vyshchelachivaniya urana (Complex approach to the solving of intensifi cation problem of the process of underground well leaching of uranium). Gornyy informatsionno-analiticheskiy byulleten = Mining Informational and Analytical Bulletin. 2012. No. 7. pp. 64–73. 4. Duysebaev B. O., Kopbaeva M. P., Panova E. N., Smaylov E. K. Razrabotka modulnogo pererabatyvayushchego kompleksa podzemnogo skvazhinnogo vyshchelachivaniya urana dlya lokalnykh uchastkov mestorozhdeniy (Development of module processing complex of underground well leaching of uranium for local sites of deposits). Gornyy informatsionno-analiticheskiy byulleten = Mining Informational and Analytical Bulletin. 2011. No. 8. pp. 116–120. 5. Mojica-Rodriguez L., Bertrand M., Gaillard J. Study on uranium peroxide precipitation in a continuous fluidized-bed reactor with mechanical stirring. Nuclear Engineering and Design. 2015. Vol. 293. pp. 150–158. 6. Kim K.-W., Hyun J.-T., Lee K.-Y. Effects of the different conditions of uranyl and hydrogen peroxide solutions on the behavior of the uranium peroxide precipitation. Journal of Hazardous Materials. 2011. Vol. 193. pp. 52–58. 7. Misra C. S., Mukhopadhyaya R., Apte S. K. Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. Journal of Biotechnology. 2014. Vol. 189. pp. 88–93.
8. Meshkov E. Yu., Akimova I. D., Shchipanova R. S., Kochubeeva S. L. Osazhdenie khimicheskogo kontsentrata urana v vide peroksida v skheme pryamoy ekstraktsii urana iz rastvorov vyshchelachivaniya (Sedimentation of chemical uranium concentrate in the type of peroxide in the scheme of direct uranium extraction from leaching solutions). Khimicheskaya tekhnologiya = Theoretical Foundations of Chemical Engineering. 2014. Vol. 15, No. 4. pp. 227–231. 9. ASTM C967-08 Standard Specification for Uranium Ore Concentrate, ASTM International, West Conshohocken, PA. 2008. 10. Ralph K. Iler. Khimiya kremnezema (The chemistry of silica). Translated from English. Moscow : Mir, 1982. Part 1. 416 p. 11. Ralph K. Iler. Kolloidnaya khimiya kremnezema i silikatov (The colloid chemistry of silica and silicates). Translated from English. Moscow : Gosstroyizdat, 1959. 12. Kambalina M. G., Skvortsova L. N., Mazurova I. S., Guseva N. V. K voprosu o metodakh opredeleniya rastvorimykh soedineniy kremniya v vode i sposobakh ee obeskremnivaniya (The problem of methods of definition of dissoluble silicon compounds in water and its desiliconization methods). Izvestiya Tomskogo politekhnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University. 2013. Vol. 323, No. 3. pp. 18–21. 13. Litvinenko V. G., Dorzhieva A. G. Vliyanie kremnevykh kislot na protsess izvlecheniya urana iz rudnykh pulp anionoobmennymi smolami (Influence of silicon acids on the process of uranium extraction from ore pulps by anion-exchange resins). Innovatsionnye protsessy kompleksnoy i glubokoy pererabotki mineralnogo syrya, Plaksinskie chteniya (Innovation processes of complex and deep processing of mineral raw materials, Plaksin readings). Tomsk, 2013. pp. 269–272. 14. Rabinovich V. A., Khavin Z. Ya. Kratkiy khimicheskiy spravochnik (Brief chemical reference book). Leningrad : Khimiya, 1991. 448 p. 15. Lure Yu. Yu. Spravochnik po analiticheskoy khimii (Analytical chemistry reference book). Sixth edition, revised and enlarged. Moscow : Khimiya, 1989. 448 p. 16. Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposit. Geochimica et Cosmochimica Acta. 1978. Vol. 42. pp. 547–569. 17. Dugger D. L., Stanton J. H., Irby B. N. The ion exchange properties of twenty metal ions with the weakly acidic silanol group of silicagels. Journal of Physical Chemistry. 1964. Vol. 68. pp. 757– 760. 18. Weber W. J., Strumm W. Formation of silicate (III) complex in aqueous solution. Journal of Inorganic and Nuclear Chemistry. 1965. Vol. 27. pp. 237–239. |