Журналы →  Gornyi Zhurnal →  2016 →  №5 →  Назад

INDUSTRY SAFETY AND LABOUR PROTECTION
Название Isotopic composition of coal mine methane
DOI 10.17580/gzh.2016.05.17
Автор Tailakov O. V., Efimov V. I., Tailakov V. O., Gerasimov A. V.
Информация об авторе

Institute of Coal, Federal Research Center for Coal and Coal Chemistry, Siberian Branch, Russian Academy of
Sciences, Kemerovo, Russia:

O. V. Tailakov, Head of Laboratory, Doctor of Engineering Sciences, oleg2579@gmail.com

A. V. Gerasimov, Engineer

 

National University of Science and Technology MISIS, Moscow, Russia:
V. I. Efimov, Professor, Doctor of Engineering Sciences

 

Uglemetan Service, Kemerovo, Russia:
V. O. Tailakov, Senior Researcher, Candidate of Engineering Sciences

Реферат

To improve efficiency of coalbed methane drainage and operation of ventilation systems based on true information on gas distribution in coal mine production and development drives, it was suggested to use the data on carbon-12 and carbon-13 stable isotope content of coalbed methane and mine air methane obtained using advanced gas analysis laboratory equipment. The content of the above mentioned isotopes in coal mine air was defined based on laboratory studies conducted using samples of methane–air mixtures taken directly from underground excavations in a few Kuzbass coal mines. The laboratory studies of carbon-12 and carbon-13 in coalbed methane were conducted using the direct absorption spectroscopy method, whereby the extracted coal was placed in sealed vessels and heated up to 70 °C, then methane was taken off and carbon isotopes content was registered. The studies allowed to determine that methane taken directly from coal samples had a higher carbon-13 content (δ13С = –26.3–38.6‰) as compared to methane contained in mine stopes and in goafs (δ13С = –46.0–56.32‰). Thus, coal methane can be described as gas formed as a result of thermogenic processes, and mine ventilation air methane — as a result of coal methane mixed with biogenic methane additionally coming in mine workings and/or goafs. The research findings may be of interest for clarifi cation of computational models describing interconnection of gas ventilation parameters complemented by the parameters describing carbon stable isotopes content in coal and in mine air. This would contribute to the improvement of measures aimed at removal and further utilization of coalbed methane and ventilation air methane.
This study has been supported by the Russian Foundation for Basic Research, Project No. 16-45-420916 р_а.

Ключевые слова Coalbed methane, isotopic composition, coal mining, gas balance, coal core, mine air
Библиографический список

1. Polevshchikov G. Ya., Kozyreva E. N., Shinkevich M. V. Obosnovanie tekhnologicheskikh resheniy po upravleniyu metanoobilnostyu vyemochnogo uchastka s uchetom geomekhanicheskikh protsessov (Sustantiation of technological solutions for the control of methane-bearing capacity of working area taking into account geomechanical processes). Vestnik nauchnogo tsentra po bezopasnosti rabot v ugolnoy promyshlennosti = Bulletin of scientifi c center of work safety in coal industry. 2014. No. 2. pp. 37–43.
2. Polevshchikov G. Ya. Dinamicheskie gazoproyavleniya pri provedenii podgotovitelnykh i vskryvayushchikh vyrabotok v ugolnykh shakhtakh (Dynamic gas show during the development and main openings in coal mines). Kemerovo : Institute of Coal and Coal Chemistry of Siberian Branch of Russian Academy of Sciences, 2003. 317 p.
3. Polevshchikov G. Ya., Kozyreva E. N., Shinkevich M. V. Nelineynye izmeneniya metanoobilnosti vysokoproizvoditelnogo vyemochnogo uchastka (Non-linear changes of methane bearing capacity of highproductive excavation site). Bezopasnost truda v promyshlennosti = Occupational safety in industry. 2014. No. 6. pp. 50–54.
4. Taylakov O. V., Taylakov V. O., Zastrelov D. N., Kormin A. N. Sposob otsenki resursov metana ugolnykh plastov (Method of assessment of methane resources in coal layers). Gornyy informatsionno-analiticheskiy byulleten = Mining Informational and Analytical Bulletin. 2014. No. S415. pp. 3–10.
5. Taylakov O. V., Kormin A. N., Taylakov V. O. Opredelenie ostatochnoy gazonosnosti ugolnykh plastov na osnove makrokineticheskikh desorbtsionnykh protsessov filtratsii i diffuzii metana dlya otsenki effektivnosti degazatsii (Defi nition of the residual gas-bearing capacity of coal layers on the basis of macrokinetic desorption processes of fi ltration and diffusion of methane for the assessment of degassing efficiency). Nauka i tekhnika v gazovoy promyshlennosti = Science & Technology in the Gas Industry. 2014. No. 1 (57). pp. 10–13.
6. Taylakov O. V., Mazanik E. V., Kormin A. N. Razrabotka metodiki opredeleniya gazonosnosti ugolnykh plastov v protsesse vedeniya gornykh rabot (Development of method of defi nition of gas-bearing capacity of coal layers in mining process). Gornyy informatsionno-analiticheskiy byulleten = Mining Informational and Analytical Bulletin. 2011. No. S8. pp. 210–214.
7. Rivkina E. M., Kraev G. N., Krivushin K. V. et al. Metan v vechnomerzlykh otlozheniyakh severo-vostochnogo sektora Arktiki (Methane in permafrost depsoits of the North-Eastern Arctic sector). Kriosfera Zemli = Earth’s Cryosphere. 2006. Vol. X, No. 3. pp. 23–41.
8. Li Y., Tang Da Z., Fang Y. et al. Distribution of stable carbon isotope in coalbed methane from the east margin of Ordos Basin. Science China-Earth Sciences. 2014. Vol. 57, No. 8. pp. 1741–1748.
9. Hamilton S. K., Golding S. D., Baublys K. A. Stable isotopic and molecular composition of desorbed coal seam gases from the Walloon Subgroup, eastern Surat Basin, Australia. International Journal of Coal Geology. 2014. Vol. 122. pp. 21–36.
10. Audi G., Bersillon O., Blachot J. and Wapstra A. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics. 2003. A 729. pp. 3–128.
11. Gusev M. V., Mineeva L. A. Mikrobiologiya (Microbiology). Moscow : Publishing House of Moscow University, 2004. 448 p.
12. Sovremennaya mikrobiologiya. Prokarioty (Biology of the Prokaryotes). In two volumes. Translated from English. Under the editorship of Joseph W. Lengeler, Gerhart Drews and Hans Gunter Schlegel. Moscow : Mir, 2005. Vol. 1-2.
13. Ermakov V. I., Lebedev V. S., Nemchenko N. N., Rovenskaya A. S., Grachev A. V. Izotopnyy sostav ugleroda prirodnykh gazov severa Zapadno-Sibirskoy nizmennosti v svyazi s voprosom ikh genezisa (Isotopic composition of natural gas carbon in the North of West-Siberian plain in connection with their genesis problem). Doklady Akademii nauk SSSR = Reports of USSR Academy of Sciences. 1970. Vol. 190, No. 3. pp. 683–686.
14. A Guide to Coalbed Methane Reservoir Engineering. Chicago, Illinois, USA : GRI, 1994. 307 p.
15. Van de Wetering N., Esterle J., Baublys K. Decoupling delta C-13 response to palaeofl ora cycles and climatic variation in coal: A case study from the Late Permian Bowen Basin, Queensland, Australia. Palaeogeography Palaeoclimatology Palaeoecology. 2013. Vol. 386. pp. 165–179.
16. Yoshioka H., Mochimaru H., Sakata S. et al. Methane production potential of subsurface microbes in Pleistocene sediments from a natural gas field of the dissolved-in-water type, central Japan. Chemical Geology. 2015. Vol. 419. pp. 92–101.
17. Bakhaus K., Golutva I. A., Zastrelov D. N., Smyslov A. I. Rotatsionnye nasosy dlya degazatsii i obespecheniya shakhtnym gazom mini-teploelektrostantsiy (Rotation pumps for degasing and provision of mini thermal power stations with mine gas). Ugol = Russian Coal Journal. 2013. No. 5. pp. 86–88.
18. Zastrelov D. N., Utkaev E. A., Smyslov A. I., Kormin A. N. Razrabotka setevoy modeli protsessa utilizatsii shakhtnogo metana (Development of the network model of shaft methane utilization process). Gornyy informatsionno-analiticheskiy byulleten = Mining Informational and Analytical Bulletin. 2013. No. 6. Special issue. pp. 151–154.

Language of full-text русский
Полный текст статьи Получить
Назад