Journals →  Obogashchenie Rud →  2016 →  #3 →  Back

SECONDARY RAW MATERIAL PROCESSING
ArticleName Investigation of the possibility of talcum flotation tailings gravity separation
DOI 10.17580/or.2016.03.09
ArticleAuthor Ryabinin V. F., Vusikhis A. S., Kudinov D. Z.
ArticleAuthorData

Institute of Geology & Geochemistry, Ural Branch of the RAS (Russia):

Ryabinin V. F., Ph. D. in Geology and Mineralogy, Senior Researcher, ryabininvf@mail.ru
Vusikhis A. S., Ph. D. in Engineering Sciences, Senior Researcher, vas58@mail.ru
Kudinov D. Z., Ph. D. in Engineering Sciences, Senior Researcher, d.kudinov@mail.ru

Abstract

Man-induced waste is an additional source of raw material. As part of the work performed with a view to determine an efficient flow sheet for the Shabrovsky talc integrated plant waste utilization in order to estimate a possibility of waste recycling as magnesia flux, the Shabrovsky talc integrated plant waste representative sample was subjected to gravity separation on laboratory concentrating table. The sample mineralogical analysis showed, that the Shabrovsky talc integrated plant waste material consists of mixture of metasomatites, developed in ultrabasic rocks, with admixed granitoids alteration products. Main waste minerals are ferro-magnesian carbonate (breunnerite) and talcum. Among ore minerals, magnetite dominates, hematite is represented in a lesser degree. As accessory ore minerals, pyrite, occasionally chromite, chalcopyrite, pyrrhotine, rare metals minerals are present. Among accessory non-ore minerals, serpentine, amphibole (hornblende), garnet (almandine), tourmaline (schorl), zircon are observed. It was determined that gravity separation permits to produce concentrates with increased to 20 % ore component grade (concentrate 1) and increased to 85 % ferro-magnesian carbonate grade of breunnerite series (concentrate 2), that may be directly utilized in magnesia flux production. Other processing products (middlings, tailings, slimes) contain a large quantity of silicon oxide. With that, they cannot be used for flux production. Silicon oxide must be separated first.

keywords Man-induced waste, the Shabrovsky talc integrated plant, magnesia flux, gravity separation, middlings, tailings, slimes, silicon oxide, ferro-magnesian carbonate, breunnerite
References

1. Demidov K. N., Borisova T. V., Vozchikov A. P. et al. Vysokomagnezialnyye flyusy dlya staleplavilnogo proizvodstva (Highmagnesian fluxes for the steel production). Ekaterinburg, Uralskiy rabochiy, 2013, 280 pp.
2. Babenko A. A., Krivykh L. Yu., Levchuk V. V. Influence of the magnesium-oxide content on the refining properties of converter slag. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 2010, No. 4, pp. 20–23.
3. Krivykh L. Yu. Babenko A. A., Remigo S. A. The technology of converter melting to form a wear-resistant scull on the basis of lime-magnesian ferruginous slags. Chernaya Metallurgiya. 2008, No. 6, pp. 54–57.
4. Babenko A. A., Fomichev M. S., Krivykh L. Yu., Levchuk V. V., Remigo S. A. Steel output in the 160-t converters of carbon semiproduct under magnesian slag. Stal = Steel, 2010, No. 8, pp. 35–37.
5. Babenko A. A., Krivykh L. Yu., Mukhranov N. V., Levchuk V. V., Remigo S. A., Savel’ev M. V. Phase composition of magnesia converter slag and improved wear resistance of the lining's slag coating. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy, 2012, No. 2, pp. 37–40.
6. Smirnov L. A. Using ferruginous lime-magnesia flux in the converter smelting. Stal = Steel, 2000, No. 11, pp. 46–48.
7. Palgova A. Yu. Overview of world reserves of magnesite raw materials. Molodoy Uchenyy, 2015, No. 3, pp. 193–196.
8. Brezani I., Zelenak F., Zelenak M. Collectorless flotation of talc-magnesite ore with respect to particle size. Montanistica Slovaca, 2013, Vol. 18, No. 3, pp. 198–205.
9. Wolfler A., Prochaska W., Fritz H. Shear zone related talc mineralization in the Veitsch nappe of the eastern Greywacke Zone (Eastern Alps, Austria). Austrian Journal of Sciences, 2015, Vol. 108/1, pp. 50–72.
10. Lindahl I., Nilsson L. P. Geology of the soapstone deposits of the Linnajavri area, Hamaroy Nordrand, north Norwegian Caledonids — Norway’s largest reserves of soapstone. Geology of Society, Geological Survey of Norway Special Publication. Slagstad T. (ed.), 2008, No. 11, pp. 19–35.
11. Sengupta H. P., Yadav R. N. Diagenetic talc of Jhiroli, Kumaun Himalaya. Current Science, 2007, Vol. 92, No. 1, pp. 99–103.
12. Ali-Bik M. W., Taman Z., El Kalioubi B., Abdel Wahab W. Serpentinite-hosted talc-magnesite deposits of Wadi Baramiyaarea, Estern Desert, Egipt: Characteristics, petrogenesis and evolution. Journal of African Earth Sciences, 2012, Vol. 64, pp. 77–89.
13. Ragimov R. A., Suglobov A. V. JSC «Shabrovsky talc plant»: from its origins to the present day. Gornyi Journal = Mining Journal, 2007, No. 1, pp. 18–21.
14. Khvorov P. V. Syrostanskoye mestorozhdeniye talkomagnezita (Yuzhnyy Ural) (Syrostanskoe talc magnesites deposit (the South Urals)). Miass, Institute of Mineralogy, Ural Branch of the RAS, 2003, 68 pp.
15. Khoroshavin A. B., Ragimov R. A., Pshenichnikova Z. I. Shabrovskoe breinerite concentrates. Novyye Ogneupory = Refractories and Industrial Ceramics, 2006, No. 2, pp. 20–22.

Language of full-text russian
Full content Buy
Back