Журналы →  Gornyi Zhurnal →  2016 →  №7 →  Назад

FROM THE OPERATIONAL EXPERIENCE OF THE MINING COMPANIES AND THE ORGANIZATIONS
MINE «KOMSOMOLSKY»
Название Features of seismic activity in Skalistaya mine
DOI 10.17580/gzh.2016.07.03
Автор Marysyuk V. P., Tereschenko M. V., Tsirel S. V., Mulev S. N.
Информация об авторе

Center for Geodynamic Safety, Polar Division, Norilsk Nickel, Norilsk, Russia:

V. P. Marysyuk, Director, Candidate of Engineering Sciences, marysyukvp@tf.nk.nornik.ru
M. V. Tereshchenko, II Category Engineer

 

Saint-Petersburg Mining University, Saint-Petersburg, Russia:
S. V. Tsirel, Senior Researcher, Doctor of Engineering Sciences

 

VNIMI, Saint-Petersburg, Russia:
S. N. Mulev, Head of Laboratory

Реферат

The article considers approaches to estimating seismic activity and regional rockburst hazard in Skalistaya mine field. It is shown that the procedure recommended for the mine seismic station ISS and based on the ratio of seismic energy and seismic moment (overall energy) is low-efficient in assessment of seismic hazards. Probably, the reason is a wide variety of dynamic events in the mine, including events omitted in the Brune model. Therefore, the procedure accepted in the mine is based on the integrated index F and is used in other mines of the Polar Division of Norilsk Nickel, where seismic monitoring employs seismic stations Relos. The intergated index F involves three seismic parameters — number of seismic events; seismic deformation determined using the Benioff method; and slope of frequency plot of seismic events. Aiming to improve efficiency of the index F to be used by seismic stations of different type, a detailed analysis embraces the relation between the values of F and the linear size L of a cell of a mesh to represent rock mass in calculation of F. According to the results, under conditions of Skalistaya mine, the maximum value of F linearly depends on the area of cells of the mesh representing the area under study, F = bL·L. As a rule, large seismic events are preceded by an increase in the coefficient band by a rise in the ratio of F of the overall area to F in the most active zone, and then follows a certain decrease in bL in the most hazardous zone.

Ключевые слова Mine, rock mass, seismic activity, rockburst hazard, seismic energy, prognostic signs, estimation methods, linear dependence
Библиографический список

1. Mendecki A. J. Seismic monitoring in mines. London : Chapman and Hall, 1997. 262 p.
2. Mendecki A. J., van Aswegen G., Mountfort P. A guide to routine seismic monitoring in mines. A handbook on rock engineering practices for tabular hard rock mines. Editors: A. J. Jager, J. A. Ryder. Cape Town : Creda Communications, 1999. 371 p.
3. Brune J. N. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research. 1970. Vol. 75. pp. 4997–5009.
4. Young D. P. Energy variations in mining-induced seismic events using apparent stress : MASc Thesis, Laurentian University. 2012. 85 p.
5. Wesseloo J., Woodward K., Pereira J. Grid-based analysis of seismic data. The Journal of Southern African Institute of Mining and Metallurgy. 2014. Vol. 114. pp. 815–822.
6. Braun L. G. Seismic hazard evaluation using apparent stress ratio for mining-induced seismic events : Ph. D. Thesis, Laurentian University. 2015. 257 p.
7. Xu N. W., Tang C. A., Sha C., Liang Z. Z., Yang J. Y., Zou Y. Y. Microseismic monitoring system establishment and its engineering applications to left bank slope of Jinping I Hydropower Station. Chinese Journal of Rock Mechanics and Engineering. 2010. Vol. 29. pp. 915–925.
8. Liang Z. Z., Xing H., Wang S. Y., et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface fl aw. Computers and Geotechnics. 2012. Vol. 45. pp. 19–33.
9. Yakovlev D. V., Tsirel S. V., Mulev S. N. Zakonomernosti razvitiya i metodika operativnoy otsenki tekhnogennoy seysmicheskoy aktivnosti na gornykh predpriyatiyakh i v gornodobyvayushchikh regionakh (Regularities of development and method of operational assessment of technogenic seismic activity at mining enterprises and in mining regions). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2016. No. 2. pp. 34–47.
10. Seysmostantsiya «Relos» (Seismic station “Relos”). 2015. Available at: http://krasavt.ru/products/sejsmometricheskij-monitoring/as-relos (accessed: June 24, 2016). (in Russian)
11. Benioff H. Earthquakes and Rock Creep. Bulletin of the Seismological Society of America. 1951. Vol. 41, No. 1. pp. 31–62.
12. Mulev S. N, Belyaeva L. I., Skakun A. P. Metodika prognoza udaroopasnogo sostoyaniya massiva v seysmogeologicheskikh usloviyakh polya shakhty «Komsomolskaya» (The technique of forecasting the bump hazardous state of rock mass at seismological conditions of "Komsomolskaya" mine field). Gornyy informatsionno-analiticheskiy byulleten = Mining Informational and Analytical Bulletin. 2009. No. 12. pp. 241–249.
13. Anokhin A. G., Semenko K. A., Darbinyan T. P., Tsirel S. V., Mulev S. N. Metodologiya ucheta stepeni vliyaniya narushennosti rudoporodnogo massiva na seysmicheskiy risk (Methodology of accounting for effect of ore and host rock damage ratio on seismic risk). Gornyi Zhurnal = Mining Journal. 2014. No. 4. pp. 19–24.
14. Kozyrev A. A., Fedotova Yu. V., Zhuravleva O. G. Veroyatnostnyy prognoz seysmo-opasnykh zon v usloviyakh udaroopasnykh mestorozhdeniy Khibinskogo massiva (Probabilistic prediction of seismic hazardous zones in rockburst-prone ore mines of the Khibiny massif). Vestnik Murmanskogo Gosudarstvennogo Tekhnicheskogo Universiteta = Proceedings of the Murmansk State Technical University. 2014. Vol. 17, No. 2. pp. 225–230.

Полный текст статьи Features of seismic activity in Skalistaya mine
Назад