ArticleName |
Pilot trial of room-and-pillar mining in Tsentralnaya Osnovnaya ore body in Komsomolskaya Mine
|
ArticleAuthorData |
Polar Division, Norilsk Nickel, Norilsk, Russia:
T. P. Darbinyan, Deputy Head of Mining Department, ggu@tf.nk.nornik.ru N. K. Tukhvatullin, Leading Specialist, Geodynamic Safety Center Yu. B. Sidorenko, Leading Specialist, Geodynamic Safety Center
Interregional Technological Department, Rostekhnadzor Federal Environmental, Industrial and Nuclear Supervision Service of Russia, Norilsk, Russia: A. S. Koretskiy, Governmental Inspector |
Abstract |
The Komsomolskaya Mine project provides for slice longwall with cemented backfi lling for the ore body named Tsentralnaya Osnovnaya. Aiming to improve the mine safety and to enhance its output, as well as to reduce ore loss, the technical services of the mine decided on a pilot trial of room-and-pillar mining method. If the thickness of the associated high-grade cupriferous ore occurrence is more than 7 m, the room-and pillar mining schemes condition separate extraction of different type ore (the first stage is extraction of high-grade cupriferous ore, the second stage is mining of fi nely disseminated ore); if the ore thickness is less than 7 m, it is recommended to carry out single-stage room-and-pillar. The ground control and safety of development and preparatory drives and rooms involve a package of measures, including instrumental measurement, visual observation and analysis of technological parameters of the mining method. Formation of safety zones for stoping in the area of the pilot trial involves destressing drilling to the depth of 4 m in sidewalls of preparatory drives on the upper and lower horizons. The research findings have exhibited increased stresses at a level higher than 0.7σcom at a distance of more than 1.5 m from the stoping perimeter, which falls within the rockburst unhazard category. At the same time, visual observation in the northern stopes of the Tsentralnaya Osnovnaya ore body discovers traces of ground pressure events: growth of acoustic noise in the form of sharp rattle and dry clicking; condition of the preparatory drives has altered — the sidewall perimeter deforms, which is reflective of increased vertical stresses. In view of the discovered signs of higher overburden pressure, it is concluded on inefficiency of the destressing holes to relax stresses. To ensure geodynamic safety of stoping in the area of the pilot trial, it was decided to change the stress relaxation technique and to replace the destressing drilling from preparatory drives by formation of safety zones by relief hole drilling. |
References |
1. Proekt «Rudnik «Komsomolskiy». Otrabotka flangovykh zapasov bogatykh rud» (Project «Komso molsky mine». Stoping the offend reserves of rich ores»). Norilsk, 1996. (in Russian) 2. Zubov V. P., Morozov M. D., Malyutin A. S. Obespechenie ustoychivosti bokov ochistnykh zakhodok pri sloevykh sistemakh razrabotki bogatykh zheleznykh rud (Stopes walls stabilization at the rich iron ore mining by the flat-back cut-and-fill method). Zapiski Gornogo instituta. Poleznye iskopaemye Rossii i ikh osvoenie = Proceedings of the Mining Institute. Russian minerals and their mastering. 2014. Vol. 207. pp. 26–32. 3. Malyutin A. S. Predotvrashchenie obrusheniy kraevykh chastey rudnogo massiva v ochistnykh zakhodkakh pri vedenii gornykh rabot sloevymi sistemami s zakladkoy vyrabotannogo prostranstva (Prevention of failure of stope edges in cut-and-fill mining methods). Zapiski Gornogo instituta. Problemy nedropolzovaniya = Proceedings of the Mining Institute. Subsoil use problems. 2013. Vol. 206. pp. 81–85. 4. Turtygina N. A. Vybor optimalnykh parametrov kamernoy sistemy razrabotki s uvelichennymi parametrami ochistnogo prostranstva (Choice of optimal parameters of heading-and stall method with increased working excavation parameters). Nauchnyy vestnik Norilskogo industrialnogo instituta = Scientific bulletin of Norilsk Industrial Institute. 2011. No. 8. pp. 33–35. 5. Anokhin A. G. Opyt vnedreniya kamernykh sistem razrabotki pri otrabotke «medistykh» rud rudnika «Oktyabrskiy» (Experience of implementation of heading-and-stall methods during the «cupriferous» ore stoping at Oktyabrskiy mine). Geodinamika i sovremennye tekhnologii otrabotki udaroopasnykh mestorozhdeniy : sbornik nauchnykh trudov nauchno-prakticheskoy konferentsii (Geodynamics and modern technologies of stoping of bump hazard deposits : collection of scientific proceedings of scientific-practical conference). Norilsk : MMC «Norilsk Nikel», 2012. pp. 106–112. 6. Borisov A. A. Mekhanika gornykh porod i massivov (Mechanics of rocks and massifs). Moscow : Nedra, 1980. 360 p. 7. Kazikaev D. M. Geomekhanika podzemnoy razrabotki rud : uchebnik dlya vuzov (Geomechanics of underground ore mining : tutorial for universities). Moscow : Moscow State Mining University, 2005. 542 p. 8. Polozhenie po bezopasnomu vedeniyu gornykh rabot na mestorozhdeniyakh, sklonnykh i opasnykh po gornym udaram (Regulations for safe mining at the deposits liable and prone to rock-bumps). Moscow, 2013. (in Russian) 9. Shkuratnik V. L., Nikolenko P. V., Kormnov A. A. Obosnovanie metoda ultrazvukovogo korrelyatsionnogo karotazha dlya strukturnoy diagnostiki krovli gornykh vyrabotok (Ultrasonic correlation logging for roof rock structure diagnostics). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2015. No. 3. pp. 41–47. 10. Borshch-Komponiets V. I., Makarov A. B. Gornoe davlenie pri otrabotke moshchnykh pologikh rudnykh zalezhey (Rock pressure during thick flat ore deposit stoping). Moscow : Nedra, 1986. 271 p. 11. Kazikaev D. M., Savich G. V. Prakticheskiy kurs geomekhaniki podzemnoy i kombinirovannoy razrabotki rud : uchebnoe posobie (Practical course of geomechanics of underground and combined ore mining : tutorial). Moscow : Gornaya kniga, 2012. 224 p.
12. Ukazaniya po bezopasnomu vedeniyu gornykh rabot na Talnakhskom i Oktyabrskom mesto rozhdeniyakh, sklonnykh i opasnykh po gornym udaram (Regulations for safe mining at Talnakh and Oktyabrskoe deposits liable and prone to rock-bumps). Norilsk, Saint Petersburg, 2015. (in Russian) 13. Galaov R. B., Nagovitsin Yu. N., Pliev B. Z., Andreev A. A., Vilchinskiy V. B. Sovershenstvovanie sposobov krepleniya vyrabotok na rudnikakh Zapolyarnogo Filiala otkrytogo aktsionernogo obshchestva «GMK «Norilskiy nikel» (Improvement of excavation support techniques in mines of the Norilsk Nickel mining and metallurgical company). Gornyi Zhurnal = Mining Journal. 2014. No. 4. pp. 25–28. 14. Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The finite element method: its basis and fundamentals. 7th еdition. Butterworth-Heinemann, 2013. 756 p. 15. Shkuratnik V. L., Nikolenko P. V., Kormnov A. A. Characteristics of instrumental support of structural heterogeneity control around mining using noise probing signals. Sbornik nauchnykh trudov Natsionalnogo Issledovatelskogo Tekhnologicheskogo Universiteta «MISiS» (Collection of scientific proceedings of National University of Science and Technology «MISiS»). Moscow, 2015. pp. 60–65. 16. Anokhin A. G., Semenko K. A., Darbinyan T. P., Tsirel S. V., Mulev S. N. Metodologiya ucheta stepeni vliyaniya narushennosti rudoporodnogo massiva na seysmicheskiy risk (Methodology of accounting for effect of ore and host rock damage ratio on seismic risk). Gornyi Zhurnal = Mining Journal. 2014. No. 4. pp. 19–24. 17. Underground mining technology: centuries of history from the foundation for today’s sophisticated systems. Engineering and Mining Journal. 2013. Supplement. pp. 8–16. 18. Fiscor S. Roof bolting technology. Coal Age. 2012. Vol. 117, No. 5. pp. 26–30. 19. Makarov A. B. Prakticheskaya geomekhanika. Posobie dlya gornykh inzhenerov (Practical geomechanics. Tutorial for mining engineers). Moscow : Gornaya kniga, 2006. 391 p. |