Journals →  Gornyi Zhurnal →  2016 →  #12 →  Back

ENVIRONMENTAL PROTECTION
ArticleName Joint recycling of mineral dressing and chemical production waste in integrated multi-component ore mining
DOI 10.17580/gzh.2016.12.18
ArticleAuthor Radchenko D. N., Lavenkov V. S., Gavrilenko V. V., Yemelyanenko E. A.
ArticleAuthorData

Institute of Integrated Mineral Development — IPKON Russian Academy of Sciences, Moscow, Russia:

D. N. Radchenko, Senior Researcher, Associate Professor, Candidate of Engineering Sciences, mining_expert@mail.ru
V. S. Lavenkov, Junior Researcher
V. V. Gavrilenko, Researcher

 

Magnitogorsk State Technical University, Magnitogorsk, Russia:
E. A. Yemelyanenko, Associate Professor, Candidate of Engineering Sciences

Abstract

In the environmentally sound cycle of integrated mineral mining, the key part of acceptable human environment security belongs to technologies of control over circulation of a mineral extracted from the subsoil and then returned to mined-out underground void. This makes a complete cycle of integrated development of a subsoil area. From the viewpoint of the environmentally sound underground ore mining, it is advisable to use methods of mining with backfilling. Such approach enables recycling both the mining and processing waste and the rejects of allied industries. The results of the accomplished research illustrate capabilities of utilization of the most toxic waste of mining and chemical industries, namely, phosphogypsum, in backfills made of copper and pyrite ore processing waste. The scope of the research embraced a few trends in recycling of dumped raw phosphogypsum and a product of bakeout. The ecological and economical effect of the technology is mitigation of toxic impact induced by phosphogypsum dumps on the environment, partial or complete withdrawal of expensive cement from backfill mixtures and elimination of mine dumps, tailings ponds and chemical industry rejects from the ground surface.

keywords Integrated subsoil development, environmentally sound cycle, mining and processing waste, allied industry rejects, copper and pyrite ore dressing waste, phosphogypsum, joint recycling
References

1. Kaplunov D. R., Rylnikva M. V., Radchenko D. N. Scientific and methodological basis of ecologically-balanced cycle design for complex mastering and saving of Earth soils. Gornyy informatsionno-analiticheskiy byulleten. Special issue No. 15 "Conditions of stable functioning of mineral resource complex in Russia". 2015. pp. 5–11.
2. Rylnikova M. V., Galchenko Yu. P., Radchenko D. N. Method of monitoring of the modern state of mining-technical systems and environment in their functioning regions. Gornyy informatsionno-analiticheskiy byulleten. Special issue No. 2 "Conditions of stable functioning of mineral resource complex in Russia". 2014. pp. 11–33.
3. Rylnikova M. V., Radchenko D. N. Creating research center for the environmentally sound and comprehensive utilization of hard minerals in Russia. Gornyi Zhurnal. 2014. No. 12. pp. 4–7.
4. National Emission Standards for Gasoline Distribution Facilities (Bulk Gasoline Terminals and Pipeline Breakout Stations). National Emission Standards for Hazardous Air Pollutants : U.S. Environmental Protection Agency, 2008. p. 13. Available at: http://www.vaporcontrol.com/40CFR63.pdf (accessed: 15.10.2016).
5. Tayibi H., López F. A., Mohamed C., López-Delgado A. Environmental impact and management of phosphogypsum. Journal of Environmental Management. 2009. Vol. 90, No. 8. pp. 2377–2386.
6. Dang W., He X., Liu Z., Liu Q.-L. Mixture ratio of phosphogypsum in backfilling. Transactions of the Institution of Mining and Metallurgy. Section A: Mining 8. Singh M., Garg M., Rehsi S. S. Durability of phosphogypsum based waterresistant anhydrite binder. Cement and concrete research. 1990. Vol. 20, No 2. pp. 271–276.

7. Rutherford P. M., Dudas M. J., Arocena J. M. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Science of the total environment. 1996. Vol. 180, No. 3. pp. 201–209.

8. Singh M., Garg M., Rehsi S. S. Durability of phosphogypsum based waterresistant anhydrite binder. Cement and concrete research. 1990. Vol. 20, No 2. pp. 271–276.
9. Deirmenci N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Construction and building materials. 2008. Vol. 22, No 8. pp. 1857–1862.
10. Nizeviien D., Vaiiukynien D., Vaitkeviius V. The influence of milling for phosphogypsum and zeolite system. Industrial & Hazardous Waste Management: 5th International Conference, 27-30 September, Greece. 2016. 7 p.
11. Yang L., Zhang Y., Yan Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. Journal of Cleaner Production. 2016. Vol. 127. pp. 204–213.
12. Reddy S., Kumar D. R., Rao H. S., Siva T. A study on strength characteristics of phosphogypsum concrete. Asian Journal of Civil Engineering. 2010. Vol. 11, No 4. pp. 411–420.
13. Ramachandran V. S., Feldman R. F., Kollepardi M. et al. Additives in concrete: reference book. Moscow : Stroyizdat, 1988. 575 p.
14. Belaïba A. et al. Studies on development of the tunisian phosphogypsum for construction bricks. International RILEM Conference Use of Recycled Materials Building Structure. Barcelona : RILEM Publications SARL, 2004. Vol. 2. pp. 1026–1034.
15. Kuryatnyk T., Luz da A., Ambroise J., Pera J. Valorization of phosphogypsum as hydraulic binder. Journal of Hazardous Materials. 2008. Vol. 160, No 2–3. pp. 681–687.
16. Ajam L., Ouezdou M. B., Felfoul H. S., Mensi R. E. Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Construction and building materials. 2009. Vol. 23, No 10. pp. 3240–3247.
17. Li X., Zhou Z., Zhao G., Liu Z. Utilization of phosphogypsum for backfilling, way to relieve its environmental impact. Gospodarka Surowcami Mineralnymi. 2008. Vol. 24, No 4/3. pp. 225–232.
18. Huang X., Zhao X., Bie S., Yang C. Hardening Performance of Phosphogypsum-Slag-Based Material. Waste Management and Technology: Proceedings of the 10th International Conference. Elsevier, 2016. Vol. 31. pp. 970–976.
19. Sun J., Wang W., Liu W. et al. Optimizing Synergy between Phosphogypsum Disposal and Cement Plant CO2 Capture by the Calcium Looping Process. Energy and Fuels. 2016. Vol. 30, No 2. pp. 1256–1265.
20. Ilimbetov A. F., Rylnikova M. V., Radchenko D. N., Milkin D. A. New decisions of the problem of complex mastering of ore deposits. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2006. No 4. pp. 8–13.
21. Trubetskoy K. N., Kaplunov D. R., Rylnikova M. V., Radchenko D. N. New approaches to designing resource-reproducing technologies for comprehensive extraction of ores. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2011. No. 3. pp. 58–67.
22. Yu. P. Galchenko, I. I. Aynbinder, V. F. Plashchinskiy, S. A. Vokhmin, P. G. Patskevich et al. Method of underground mineral deposit mining. Patent RF, No. 2306417. Applied: 08.07.2005. Published: 20.01.2007.
23. Gordashevskiy P. F. Production of gypsum binders from gypsum-bearing wastes. Moscow : Stroyizdat, 1987. 105 p.
24. Kaplunov D. R., Rylnikova M. V., Radchenko D. N., Korneev Yu. V. Mobile stowing complexes in the systems of development of ore deposits with mined-out areas stowing. Gornyi Zhurnal. 2013. No. 2. pp. 101–104.
25. Kaplunov D. R., Rylnikova M. V., Radchenko D. N. Prospects of development of the goaf stowing technology during the underground mining of ore deposits. Gornyy informatsionno-analiticheskiy byulleten. 2011. No. 12. pp. 5–10.
26. Kaplunov D. R., Rylnikova M. V., Radchenko D. N., Mannanov R. Sh., Zverev A. P. Innovation technologies of void liquidation with application of mobile filling complexes. Marksheyderskiy vestnik. 2011. No. 6. pp. 5–9. Technology. 2014. Vol. 122, No. 1. pp. 1–7.

Language of full-text russian
Full content Buy
Back