Journals →  Gornyi Zhurnal →  2018 →  #1 →  Back

EQUIPMENT AND MATERIALS
ArticleName Single-bucket excavator energy demand
DOI 10.17580/gzh.2018.01.13
ArticleAuthor Komissarov A. P., Lagunova Yu. A., Shestakov V. S., Ivanov I. Yu.
ArticleAuthorData

Ural State Mining University, Yekaterinburg, Russia:

A. P. Komissarov, Professor, Doctor of Engineering Sciences
Yu. A. Lagunova, Professor, Doctor of Engineering Sciences, yu.lagunova@mail.ru
V. S. Shestakov, Professor, Candidate of Engineering Sciences
I. Yu. Ivanov, Associate Professor, Candidate of Engineering Sciences

Abstract

Despite an increase in the bucket capacity and weight, performance of excavators remains on the same level conformable with the energy demand (power-to-weight ratio) per each shoveling machine type (electromechanical or hydraulic). Energy demand is governed by the type of working attachments, ratio of the linear and weight parameters and some other factors. It is found that hydraulic excavators having much higher capacity buckets as compared with power shovels at the same weight feature an increased installed power of driving motors (energy demand) due to the higher external load – digging resistance. The proposed layout diagram of working attachments with closed-circuit of workloads involves two opposite-arranged buckets and a closing circuit mechanism. The implementation of the proposed layout diagram of working attachments with the closed-circuit workloads reduces loading and weight of the bucket at the same capacity. The energy efficiency index is offered to characterize relative bucket capacity at certain energy demand.

keywords Excavators, performance, energy demand level, energy efficiency, working attachment, layout diagram, workload, internal closed circuit
References

1. Kornilkov S. V., Yakovlev A. V., Mattis A. R. Some problems of production of powerful home-produced dredgers. Izvestiya vuzov. Gornyy zhurnal. 2011. No. 1. pp. 12–16.
2. Mechanical engineering : encyclopedia. Ed.: V. K. Astashev. Moscow : Mashinostroenie, 2011. Vol. IV-24. Mining machines. 496 p.
3. Ganin A. R., Samolazov A. V., Donchenko T. V. Development strategy and new line of mining excavators manufactured by IZ-KARTEX (OMZ Group). Gornaya promyshlennost. 2012. No. 4. pp. 28–33.
4. Bules P. Operational effectivity of mine shovels with electrically and hydraulically driven main units used on mining enterprises. Gornaya promyshlennost. 2014. No. 6. p. 36.
5. Ding H., Yang W., Huang P., Kecskeméthy A. Automatic structural synthesis of planar multiple joint kinematic chains. Journal of Mechanical Design. 2013. Vol. 135, Iss. 9. pp. 1–12.
6. Stefanov G., Karadzinov L. Control and data log of functions for protection in the hydraulic excavator. Comptes rendus de l’Acade’mie bulgare des Sciences. 2010. Vol. 63, No. 6. pp. 909–916.
7. Liebherr: A New Focus on Mining Excavator : Supplies Report. Engineering and Mining Journal. 2011. January. Available at: http://www.e-mj.com/departments/suppliers-report/703-liebherra-new-focus-on-mining-excavators.html (accessed: 15.07.2017).
8. Miningbagger. Liebherr. Available at: https://www.liebherr.com/de/deu/produkte/mining/miningbagger/miningbagger.html (accessed: 15.09.2017).
9. Chen J., Qing F., Pang X. Mechanism optimal design of backhoe hydraulic excavator working device based on digging paths. Journal of Mechanical Science and Technology. 2014. Vol. 28, Iss. 1. pp. 213–222.
10. Lee B., Kim H. J. Trajectory Generation for an Automated Excavator. Proceedings of the 14th International Conference on Control, Automation and Systems (ICCAS ’14). Seoul, 2014. pp. 716– 719.
11. Le Q. H., Jeong Y. M., Nguyen C. T., Yang S. Y. Development of a Virtual Excavator using SimMechanics and SimHydraulic. Journal of Drive and Control. 2013. Vol. 10, Iss. 1. pp. 29–36.
12. Poderni R. Yu., Bules P. The Economic-probabilistic Model for Mining Hydraulic Excavator the Exploitation Cost, Servicing and Optimal Lifetime Estimation. Gornaya promyshlennost. 2015. No. 6. pp. 52–54.
13. Anistratov K. Yu. Technical-economic substantiation of efficiency of use of rack mine excavators EKG-18 (Uralmashzavod) at coal cuts. Gornoe delo. 2016. No. 3. pp. 6–10. Available at: http://www.gornoe-delo.ru/jgd/2016/3/# (accessed: 15.10.2017).
14. Sytenkov V. N. Comparative choice of mechanical shovel excavators with funicular and hydraulic transfer of labour body. Gornoe delo. 2014. No. 1. pp. 14–23. Available at: http://gornoe-delo.ru/jgd/2014/1/# (accessed: 15.05.2017).
15. Poderni R. Yu., Bules P. Comparative analysis of hydraulic and mechanical shoves. Gornyi Zhurnal. 2015. No. 1. pp. 55–61. DOI: 10.17580/gzh.2015.01.10
16. Mining equipment. Uralmashzavod. Available at: https://www.uralmash.ru/production/gornoe_oborudovanie/ (accessed: 15.09.2017).
17. Gafuryanov R. G., Ivanov I. Yu., Komissarov A. P. Work equipment of excavator. Patent RF, 92033 No. Applied: 01.10.2009. Published: 10.03.2010. Bulletin No. 7.
18. Ivanov I. Yu., Komissarov A. P. Rated Power Consumption of the Working Process of a Hydraulic Excavator with the Closure of the External Loads. Gornoe oborudovanie i elektromekhanika. 2011. No. 9. pp. 45–47.

Language of full-text russian
Full content Buy
Back