Журналы →  Obogashchenie Rud →  2018 →  №2 →  Назад

ORE PREPARATION
Название Disintegration process modeling for a jaw crusher with complex jaws swing
DOI 10.17580/or.2018.02.01
Автор Beloglazov I. I., Stepanyan A. S., Feoktistov A. Yu., Yusupov G. A.
Информация об авторе

St. Petersburg Mining University (St. Petersburg, Russia):

Beloglazov I. I., Associate Professor, Candidate of Engineering Sciences, beloglazov@spmi.ru

Yusupov G. A., Postgraduate Student.

 

REC «Mekhanobr-Tekhnika» (St. Petersburg, Russia):
Stepanyan A. S., Technical Director, stepanyan_as@npk-mt.spb.ru

 

CADFEM CIS JSC (St. Petersburg, Russia):
Feoktistov A. Yu., Director of Rocky Business Development, Andrey.Feoktistov@cadfem-cis.ru

Реферат

This study describes a model of the crushing process in a jaw crusher developed using the Discrete Element Method (DEM). The use of advanced software enabled a detailed study of the impact produced by crusher jaws on the material crushed. All modeling stages are detailed, starting with the preparation of a geometric model, parameter design for multivariate modeling and parameter calibration for a mathematical model with account of the experimental data, and ending with modeling of variations in the operating parameters of the crusher. This work was carried out with reference to the prototype of a new design developed by «Mekhanobr-Tekhnika» REC, which was used in the experimental studies. The experimental results obtained were compared with the computer model with account of all specific features of the machine operation and the nature of particle fracture and particle size distribution. The analysis presented in the paper demonstrates the correlation between the results of the physical experiment and the computer simulation data.
The research was carried out with the support of the grant issued by the Russian Science Foundation (project No. 17-79-30056).

Ключевые слова Low-frequency jaw crusher, simulation, DEM, discrete element method, crushing, ore preparation
Библиографический список

1. Morton D., Dunstull S. Using the Web to increase the availability of DEM-based mill modeling. Minerals Engineering. 2004. Vol. 17, No. 11–12. pp. 1199–1207.
2. Morrison R. D., Cleary P. W. Using DEM to model ore breakage within a pilot scale SAG mill. Minerals Engineering. 2004. Vol. 17, No. 11–12. pp. 1117–1124.
3. Mishra B. K., Murty C. On the determination of contact parameters for realistic DEM simulations of ball mills. Pow. Technology. 2001. Vol. 115, Iss. 3. pp. 290–297.
4. Djodjevic N., Shi F. N., Morrison R. D. Applying discrete element method modelling to vertical and horizontal shaft impact crushers. Minerals Engineering. 2003. Vol. 16, Iss. 10. pp. 983–991.
5. Pivnyak G. G., Vaisberg L. A., Kirichenko V. I., Pilov P. I., Kirichenko V. V. Grinding. Energy and technology: a textbook for universities. Moscow: «Ruda i Metally» Publishing house, 2007. 296 p.
6. Beloglazov I. I., Ikonnikov D. A. Computer simulation methods for crushing process in an jaw crusher. VII International Scientific Practical Conference «Innovative Technologies in Engineering». IOP Conference Series: Materials Science and Engineering. 2016. Vol. 142, Iss. 1. DOI: 10.1088/1757-899X/142/1/012074.
7. Refahi A., Aghazadeh Mohandesi J., Rezai B. Comparison between bond crushing energy and fracture energy of rocks in a jaw crusher using numerical simulation. The Journal of the Southern African Institute of Mining and Metallurgy. 2009. Vol. 109. pp. 709–717.
8. Legendre D., Zevenhoven R. Assessing the energy efficiency of a jaw crusher. Energy. 2014. Vol. 74. pp. 119–130.
9. Cleary P. W., Sinnott M. D. Simulation of particle flows and breakage in crushers using DEM: Part 1 — Compression crushers. Minerals Engineering. 2015. Vol. 74. pp. 178–197.
10. Arsentyev V. А., Blekhman I. I., Blekhman L. I., Vaisberg L. А., Ivanov K. S., Krivtsov А. М. Dynamics of particles and discrete element methods as a tool of studies and optimization of natural and man-made materials processing. Obogashchenie Rud. 2010. No. 1. pp. 30–35.

11. Maksarov V. V., Olt J. Dynamic stabilization of machining process based on local metastability in controlled robotic systems of CNC machines. Zapiski Gornogo Instituta. 2017. Vol. 226. pp. 446–451.
12. Vaisberg L. А., Demidov I. V., Ivanov K. S. Mechanics of granular media under vibration action: the methods of description and mathematical modeling. Obogashchenie Rud. 2015. No. 4. pp. 21–31. DOI: 10.17580/or.2015.04.05.
13. Next generation DEM particle simulator. URL: http://www.rocky-dem.ru/rocky/review/ (accessed: 12.04.2018).
14. Aminov V. N., Kameneva E. E., Ustinov I. D. Modeling of rock material crushing for crushed stone production. Obogashchenie Rud. 2017. No. 4. pp. 3–6. DOI: 10.17580/or.2017.04.01.
15. Schubert W., Jeschke H. DEM-simulation of the breakage process in an impact crusher. Wissensportal baumaschine.de. 2005. 4.
16. Khanal M., Schubert W., Tomas J. Ball impact and crack propagation — simulations of particle compound material. Granular Matter. 2004. Vol. 5, Iss. 4. pp. 177–184.
17. Mikhailov A. V. Coal-peat compositions for cocombustion in local boilers. Zapiski Gornogo Instituta. 2016. Vol. 220. pp. 538–544.
18. Bruchmuller J., Gu S., van Wachem B. G. M., Luo K. H. Modelling discrete, incremental, repetitive and/or simultaneous particle breakage. 7th International Conference on Multiphase Flow ICMF 2010, Tampa, FL, May 30 — June 4, 2010.
19. Preparata F., Sheimos M. Computational geometry: an introduction. Moscow: Mir, 1989. 478 p.
20. Stamboltzis G. A. Calculation of Gates—Gaudin—Schuhmann and Rosin—Rammler parameters from the size
analysis of the coarse part of the distribution. Mining and Metallurgical Annals. 1989. No. 72—73. pp. 29–38.
21. http://www.jkmrc.uq.edu.au/
22. Vaisberg L. A., Kameneva E. E. X-ray computed tomography in the study of physico-mechanical properties of rocks. Gornyi Zhurnal. 2014. No. 9. pp. 85–90.

Полный текст статьи Disintegration process modeling for a jaw crusher with complex jaws swing
Назад