Название |
Grindability research for natural cryptocrystalline graphites |
Информация об авторе |
Siberian Federal University (Krasnoyarsk, Russia):
Gilmanshina T. R., Associate Professor, Candidate of Engineering Sciences, gtr1077@mail.ru Koroleva G. A., Associate Professor, Candidate of Chemical Sciences, gakorol47@mail.ru Lytkina S. I., Associate Professor, Candidate of Engineering Sciences, svetka-lisa@mail.ru
I. N. Ulianov Chuvash State University (Cheboksary, Russia):
Illarionov I. E., Head of Chair, Doctor of Engineering Sciences, Professor |
Реферат |
The article covers grindability test results for graphites by the types of activator mills used. GLS-3 grade graphite of the Kureyskoye deposit with the ash content of 15–20 % was selected for the research. Due to the fact that graphite has lower crushability than most of its associated minerals, coarse fractions of crushed rock are enriched in graphites and fine fractions are rich in waste rock minerals. AGO-2 and Retsch PM 400 MA mills were used for graphite activation. The average particle size was determined using a Fritsch Analysette 22 MicroTec plus particle size analyzer; the ash content was established as per GOST 17818.4-90. The results obtained indicate that, when the minimum particle size is reached, the maximum liberation of graphite aggregates is ensured and, as a consequence, the maximum ash content is achieved. The duration of graphite activation was 20 minutes for the AGO-2 planetary centrifugal mill (with the average particle size decreasing to 2 μm) and 50 minutes for the Retsch PM 400 MA mill (with the average particle size decreasing from 60 to 14 μm). Therefore, it may be concluded that activation in an AGO-2 planetary-centrifugal mill enables achieving lower dispersion rates for cryptocrystalline graphite. |
Библиографический список |
1. Sun K., Qiu Y., Zhang L. Preserving flake size in an African flake graphite ore beneficiation using a modified grinding and pre-screening process. Minerals. 2017. Vol. 7, Iss. 7. 2. Vasumathi N., Vijaya Kumar T. V., Ratchambigai S. et al. Flotation studies on low grade graphite ore from eastern India. International Journal of Mining Science and Technology. 2015. Vol. 25, Iss. 3. pp. 415–420. 3. Ding S. F., Niu Y. P. Research on purification technics of some flake graphite. Advanced Materials Research. 2013. Vol. 753–755. pp. 119–123. 4. Bragina V. I., Bragin I. I. Technology of coal and nonmetallic minerals. Krasnoyarsk: Krasnoyarskoye knizhnoye izdatelstvo, 1973. 362 p. 5. Babkin V. G., Leonov V. V., Gilmanshina T. R., Stepanova T. N. Phase transformations in graphite coatings and their effect on surface cleanness of castings. Chernye Metally. 2017. No. 10. pp. 54–59. 6. Yusupov T. S., Burdukov A. P. Effect of metamorphism on the grindability of coals under impact action. Solid Fuel Chemistry. 2013. Vol. 47, No. 4. pp. 206–208. 7. Rostovtsev V. I., Baksheeva I. I. Change of the gold ore grinding kinetics after accelereted electron treatment. Fundamentalnye i Prikladnye Voprosy Gornykh Nauk. 2016. Vol. 2, No. 3. pp. 251–255. 8. Chanturiya V. А., Vaisberg L. A., Kozlov А. P. Promising trends in investigations aimed at all-round utilization of mineral raw materials. Obogashchenie Rud. 2014. No. 2. pp. 3–9. DOI: 10.17580/or.2014.02.01. 9. Welhama N. J., Berbennib V., Chapmanc P. G. Effect of extended ball milling on graphite. J. of Alloys and Compounds. 2003. No. 349. pp. 255–263. 10. Mamina L. I. Theoretical foundations of molding materials mechanoactivation and development of resourcesaving technological materials for foundry processes: Dissertation for the degree of Doctor of Engineering Sciences. Krasnoyarsk, 1989. 426 p. 11. Avvakumov E. G. Mechanical methods of chemical processes activation. Novosibirsk: Nauka, 1986. 333 p. 12. Molchanov V. I., Selezneva O. G., Zhirnov E. N. Activation of minerals during grinding. Moscow: Nauka, 1988. 208 p. 13. Mamina L. I., Koroleva G. A., Gilmanshina T. R. Perspective methods of graphite beneficiation. Liteynoe Proizvodstvo. 2003. No. 2. pp. 16–18. 14. Aman S., Aman A., Hintz W. et al. The exfoliation of graphite particles in the vibratory disk mill. Chemie-Ingenieur-Technik. 2017. Vol. 89, Iss. 9. pp. 1185–1191. 15. Borg G., Scharfe F., Kamradt A., Lempp C. Improved particle liberation of graphite and other complex ore minerals by high-velocity comminution — Introducing the new VeRo Liberator®. World of Mining — Surface and Underground. 2015. Vol. 67, Iss. 3. pp. 206–212. 16. Gorbunova O. V., Vasilevich A. V., Baklanova O. N. et al. The influence of the mechanical activation on the graphite electric conductivity. Procedia Engineering. 2015. Vol. 113. pp. 484–489. 17. Session A. Crushing, grinding, screening. Discussion. Kvaskov A. P., Aronskind S. Sh. VIII International Mineral Processing Congress. Leningrad, 1969. Vol. 1. p. 106. 18. Egorov V. L. Mineral processing. Moscow: Nedra, 1986. 421 p. 19. Gilmanshina T. R., Lytkina S. I., Khudonogov S. A., Kritskiy D. Yu. Cryptocrystalline graphite properties study following treatment by different methods. Obogashchenie Rud. 2017. No. 1. pp. 15–18. DOI: 10.17580/or.2017.01.03. 20. Gilmanshina T. R., Koroleva G. A., Baranov V. N., Kovaleva А. А. The Kureyskoye deposit graphite mechanothermochemical modification technology. Obogashchenie Rud. 2017. No. 4. pp. 7–11. DOI: 10.17580/or.2017.04.02. 21. Melnikov I. I., Veselovskiy V. S. The state and prospects for the development of the USSR graphite resource base. Moscow: VNIIMS, 1967. Iss. 9. 35 p. 22. Planetary ball mill RM 400. URL: https://www.retsch.ru/ru/api/?action=product_pdf&productId=20&id=22965 08&L=4&userId=&site=retsch&print_language=4&print_info=1&print_image=1&print_examples=1&print_advantages=1&print_features=1&print_videolink=1&print_principle=1 (accessed: 02.07.2018). 23. Analysette 22 MicroTec plus. URL: https://pel.spb.ru/userfiles/page/catalog/fritsch/analysette/pdf/A22micro.pdf (accessed: 02.07.2018). 24. Baranov V. N. Activation of graphite of various crystallochemical structures for refractory products and paints in foundry: Dissertation for the degree of Candidate of Engineering Sciences; State University of Non-ferrous Metals and Gold. Krasnoyarsk, 2005. 131 p. |