Journals →  Obogashchenie Rud →  2018 →  #4 →  Back

BENEFICIATION TECHNOLOGY
ArticleName Staged screw separation of magnetite concentrate
DOI 10.17580/or.2018.04.06
ArticleAuthor Prokopyev S. A., Pelevin A. E., Napolskikh S. A., Gelbing R. A.
ArticleAuthorData

Institute of the Earth’s Crust, SB RAS (Irkutsk, Russia):

Prokopyev S. A., Head of Department, sapr100@mail.ru

 

Ural State Mining University (Ekaterinburg, Russia):
Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor, a-pelevin@yandex.ru


Stoilensky Mining and Proccessing Plant (Stary Oskol, Belgorod region, Russia):
Napolskikh S. A., CEO

 

Vysokogorsky Mining and Proccessing Plant (Nizhniy Tagil, Sverdlovsk region, Russia):
Gelbing R. A., Chief of Technical Management — Deputy Chief Engineer

Abstract

The article covers staged iron concentrate recovery with the use of the screw separation technology. In the environments of currently operating enterprises, staged concentrate recovery is mainly possible for products containing sufficient amounts of non-liberated magnetite grains. It is most expedient to apply the staged concentrate recovery approaches for magnetic products of wet magnetic separation. The use of gravity methods is due to significant differences in densities between magnetite and host rocks. The article presents the results of industrial application of the screw separation technology for the staged separation of iron concentrate at two enterprises processing skarn magnetite ores. It is shown that screw separation enables obtaining a part of the final concentrate with the mass fraction of iron of 63.1 % to 63.3 %. The proportion of the screw separation concentrate contained in the main magnetic separation concentrate is 20–30 %. The results of pilot-scale tests of the technology of staged separation of magnetite concentrate at the production site of the Stoilensky GOK concentrating plant used for the processing of magnetite quartzites are also presented in the article. It is shown that, after the first ball milling stage, in three-stage grinding, screw separation enables obtaining a part of the final concentrate with the mass fraction of iron of 67.60 % with the recovery of 23.12 % of the wet magnetic separation middlings of the first stage. Separation of a part of the final concentrate allows reducing the costs of subsequent grinding operations.

keywords Magnetite ore, screw separation, staged concentrate recovery, mass fraction of iron, grinding stage, grain-size class
References

1. Collinao E., Tavares L. M., Davila P., Irarrazabal R., de Carvalho R. Continuous improvement in SAG mill liner design using new technologies. XXVII International Mineral Processing Congress. Santiago, Chile, 2014. Chap. 8. pp. 104–118.
2. Rosa A. C., Donda J. D., de Oliveira P. S. Comparing ball and vertical mills performance: An industrial case study. XXVII International Mineral Processing Congress. Santiago, Chile, 2014. Сhap. 8. pp. 44–52.
3. Jankovic A., Sönmez B., Oliveira R., Valery W. Effect of circulating load and classification efficiency on HPGR and ball mill capacity. XXVII International Mineral Processing Congress. Santiago, Chile, 2014. Сhap. 9. pp. 2–14.
4. Baranov V. F., Patkovskaya N. А., Tasina Т. I. Current trends in magnetite iron ores processing technology. Basic trends. Obogashchenie Rud. 2013. No. 3. pp. 10–17.
5. Malyarov P. V. Upon ball mill combination liner design. Obogashchenie Rud. 2017. No. 3. pp. 10–14. DOI: 10.17580/or.2017.03.02.
6. Plochberger T., Baqueiro Avila M. Development of an energy optimized stirred media grinding mill. Berg und Hüttenmännische Monatshefte. 2014. Vol. 159, Iss. 6. pp. 253–258.
7. Changjiu Zhang, Chunmin Wang, Jianjun Tian. Operation and process optimization of Sino iron ore’s autogenous milling circuits: The largest in the world. XXVII International Mineral Processing Congress. Santiago, Chile, 2014. Chap. 8. pp. 141–153.
8. Pelevin A. E., Sytykh N. A. Titanomagnetite ore twostage grinding circuit tests. Obogashchenie Rud. 2018. No. 2. pp. 13–18. DOI: 10.17580/or.2018.02.03.
9. Pelevin A. E., Sytykh N. A. Iron concentrate stage separation by means of drum magnetic separator with modified separating bath. Obogashchenie Rud. 2016. No. 4. pp. 10–15. DOI: 10.17580/or.2016.04.02.
10. Prokopyev S. A., Ponomareva A. M., Chanturiya V. A., Gelbing R. A. Stadial removing iron concentrate by the method of screw separation at magnetite-containing ores beneficiation. Proceedings of the VI Congress of Mineral Processors of the CIS countries. Moscow: MISiS, 2007. pp. 65–66.
11. Prabal Kumar Agrwal, Sanket Bacchuwar, Rao G. V., Sharma S. K. Оptimisation of process parameters of spiral concentrator for beneficiation of iron ore stacked slimes from Kirandul, Chattisgarh, India. XXVIII International Mineral Processing Congress Proceedings. Quebec, Canada, 2016. Paper ID 627.
12. Sadeghi M., Bazin C., Hodouin D., Devin P.-O., Lavoie F., Renaud M. Control of spiral concentrators for the concentration of iron ore. XXVIII International Mineral Processing Congress Proceedings. Quebec, Canada, 2016. Paper ID 792.
13. Ganzhenko I. M., Zarshchikova G. G., Kamalova T. B., Alekseeva L. A., Shestak Ye. M., Yakubailik E. K. Effect of demagnetization on hydraulic classification of strong magnetic ores. Obogashchenie Rud. 2013. No. 2. pp. 13–16.

Language of full-text russian
Full content Buy
Back