Journals →  Obogashchenie Rud →  2018 →  #5 →  Back

BENEFICIATION TECHNOLOGY
ArticleName Quality formation technology for Tyrnyauz deposit ores using preliminary sorting and beneficiation
DOI 10.17580/or.2018.05.06
ArticleAuthor Khakulov V. A., Krapivskiy E. I., Blayev B. Kh., Shapovalov V. A.
ArticleAuthorData

Kabardino-Balkarian State University (Nalchik, Russia):

Khakulov V. A., Head of Chair, Doctor of Engineering Sciences, Professor, vkh21@yandex.ru
Blayev B. Kh., Associate Professor, Candidate of Engineering Sciences
Shapovalov V. A., Associate Professor, Candidate of Physical and Mathematical Sciences

St. Petersburg Mining University (St. Petersburg, Russia):

Krapivskiy E. I., Professor, Doctor of Geological and Mineralogical Sciences, Krapivskiy_EI@pers.spmi.ru

Abstract

The paper presents a new ore grading technology for the Tyrnyauz deposit aimed to optimize the available processing conditions. The possibilities of rapid identification of ore types while ensuring intrahole grading and the formation of grade-based flows of mineral raw materials for separate or cyclic processing are investigated. It is proposed to use the patented technology (RF Patent No. 2537451, 2015, Selective mining method) as the basis for the intra-hole grading of skarned marbles. For the first time, a successful X-ray luminescence separation test was conducted at a high-mountain open pit. The possibilities of using a simpler RGB registration method for the identification of valuable lumps in lump sorting are investigated and substantiated. The design simplicity of the separation process channel and its self-sustainability enable forming easily and reliably controlled intra-hole grading facilities of any configuration. In the process of photometric separation, up to 85–90 % of calcite is removed with the separation tails. In order to further reduce the carbonate modulus to the values of free-milling ores, the concentrated separation product is mixed with skarn ores at the ratio of 1 : 3. The technology proposed for the formation of graded flows of rock mass at the stage of mining for their subsequent separate processing ensures stable profitability rates against the deteriorating raw material base of the enterprise through a more comprehensive use of such raw materials.
The work was performed with the state financial support under a state assignment (code 2.12842.2018/8.9).

keywords Mining, rock mass flow grading technology, selective mining method, preliminary concentration methods, skarned marble, X-ray luminescence separation, photometric separation method, color sensors.
References

1. Khakulov V. A., Karamurzov B. S., Sytsevich N. F., Kononov O. V. Prospects of mining revitalization at Tyrnyauzsky deposit based on geotechnical mapping and reappraisal of remaining reserves. Gornyi Zhurnal. 2015. No. 8. pp. 13–17. DOI: 10.17580/gzh.2015.08.03.
2. Mineralogical and technological mapping of Tyrnyauz deposit various sites ores for the purpose of development of ore quality management technique. Leningrad: Mekhanobr, 1980. Vol. 1. 200 p.
3. Reznik Yu. N., Sekisov A. G., Zykov N. V., Rubtsov Yu. I., Shumilova L. V., Manzyrev D. V. Innovative technologies in solution of the problem of gold mining efficiency increasing in Transbaikalia. Gorny Informatsionno-analiticheskiy Byulleten. 2007. Fascicule No. 4. pp. 225–231.
4. Sekisov A. G., Myazin V. P., Lavrov A. Y., Shkatov V. Y. The justification of the areas of implementation of physical-chemical geotechnologies during the exploration of the Udokanskoe deposit of cupriferous sandstone. Gorny Informatsionno-analiticheskiy Byulleten. 2011. No. 6. pp. 163–166.
5. Novikov V. V., Leman E. P., Zhagulo V. V. Nontraditional technology of ore deposits mining. Obogashchenie Rud. 1992. No. 3–4. pp. 4–12.
6. Hakulov V. A., Karyakin A. T., Ignatov V. N. Revisiting justification of the concept of the robotic mining excavator. Proc. of the International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). St. Petersburg, 2017. pp. 1–5. DOI: 10.1109/ICIEAM.2017.8076148.
7. Sytenkov V. N., Ganin A. R., Donchenko T. V., Shibanov D. A. Analysis of applications of rope and hydraulic excavators in open field development. Ratsionalnoe Osvoenie Nedr. 2014. No. 3. pp. 30–37.
8. Ways of dealing with the freezing of pelitic rocks in the bucket of the excavator at low temperatures. URL: http://docplayer.ru/73752984-Sposoby-borby-s-namerzaniemglinistyh-porod-na-kovsh-ekskavatora-pri-otricatelnyhtempe-raturah.html (accessed: 14.05.2018).
9. Lining of excavator buckets from «Granoexport». URL: https://granoexp.ru/uslugi/futerovka/kovshey (accessed: 14.05.2018).
10. URL: https://www.tomra.com/ru/solutions-and-products/sorting-solutions/mining/ (accessed: 14.05.2018).
11. URL: http://thrane.ru/sensor-based-ore-sorting (accessed: 14.05.2018).
12. URL: http://rados.ru/index.php/ru/stati/82-posobie-po-rentgenoradiometricheskoj-separatsii (accessed: 14.05.2018).
13. Morgunova N. A. Development of Kyshtym deposit quartz preliminary enrichment technology. Book of reports of the International scientific-practical conference «The Ural mining school — for regions», Ekaterinburg, April 24–25, 2017. pp. 283–284.
14. Gorbunova E. V., Pavlenko N. A., Chertov A. N. Model of optical separator for solid minerals. Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie. 2013. Vol. 56, No. 7. pp. 75–76.
15. Gülcan E., Gülsoy Ö. Y. Performance evaluation of optical sorting in mineral processing – A case study with quartz, magnesite, hematite, lignite, copper and gold ores. International Journal of Mineral Processing. 2017. Vol. 169. pp. 129–141. DOI: 10.1016/j.minpro.2017.11.007.
16. Harbeck H. Optoelektronische sortierung zur aufbereitung von feldspat bei Maffei Sarda. Aufbereitungs-Technik. 2001. Heft 9. pp. 438–444.
17. Ryabov Yu. V., Moiseeva R. N., Komarova Z. A., Lygatch V. N. Experience of research of mining and chemical raw materials ores photometric enrichment and prospects of its practical use. Gorny Informatsionno-analiticheskiy Byulleten. 2013. No. 1. pp. 118–122.
18. Litvintsev E. G., Kobzev A. S. Prospects for expanding of the gold mineral resource base on the basis of preliminary concentration. Mineralogical research and mineral resources of Russia. Materials of the annual session of the Russian mineralogical society. 2007. pp. 60–62.
19. Schmidt S. From deposit to concentrate: the basics of Tungsten mining. Part 2: Operational practices and challenges. ITIA Newsletter. 2012. December. pp. 1–19.
20. Fadina A. V., Andreev E. E., Lvov V. V. Preconcentration of raw materials using sensor-based sorting. Zapiski Gornogo Instituta. 2013. Vol. 206. pp. 139–142.
21. Dah-Jye Lee, Reddiar S. Anbalagan. High-speed automated color-sorting vision system. Proceedings of SPIE. January 1995. DOI: 10.1117/12.216853.

Language of full-text russian
Full content Buy
Back