Journals →  Obogashchenie Rud →  2018 →  #6 →  Back

BENEFICIATION TECHNOLOGY
ArticleName Thermochemical concentration of ultra-potassium aluminosilicate raw materials (synnyrite) using magnesium-containing additives of natural origin
DOI 10.17580/or.2018.06.03
ArticleAuthor Antropova I. G., Alekseeva E. N., Budaeva A. D., Dorzhieva O. U.
ArticleAuthorData

Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences (Ulan-Ude, Russia):

Antropova I. G., Head of Laboratory, Candidate of Engineering Sciences, inan@binm.ru
Alekseeva E. N., Leading Engineer, styazhkina82@inbox.ru
Budaeva A. D., Junior Researcher, abud@binm.ru

 

Buryat State University (Ulan-Ude, Russia):
Dorzhieva O. U., Master's Student, styazhkina82@inbox.ru

Abstract

This paper outlines the results of the thermochemical concentration studies of highly resistant high-potassium aluminosilicate raw materials (synnyrites) from the Kalumny section of the Synnyrsky alkaline massif, producing kalsilite-leucite concentrate. It is shown that the main mineral constituents of synnyrites are microcline and orthoclase from the potassium feldspar group (64.2%) with the general chemical formula of K[AlSi3O8] and the K[AlSiO4] kalsilite, a potassium variety of nepheline (23.6%). Based on the study of the composition, physical and chemical properties of synnyrite and thermodynamic evaluation of the interactions of K[AlSi3O8] and K[AlSiO4] with CaMg(CO3)2 and Mg(OH)2, the method of selecting low-cost magnesium-containing compounds of natural origin to be used as raw material additives in thermochemical decomposition of the main acid-resistant minerals of the source raw material was substantiated. The process parameters of synnyrite sintering with the use of each of the additives were established, ensuring the maximum decomposition of potassium feldspar to the easily liberated form of the K[AlSi2O6] leucite. It is shown that the final calcium-and magnesium-containing phases of the sintered material are akermanite (Ca2Mg(Si2O7)) in the case of sintering with dolomite and forsterite (Mg2SiO4) when sintering with brucite. The method developed enables reducing the costs of the thermochemical processes required to ensure complete decomposition of synnyrite into the kalsilite-leucite concentrate suitable for further acid treatment. In addition, due to the high content of active potassium, the artificial kalsilite-leucite concentrates formed may be recommended for use as chlorine-free potassium-containing complex fertilizers.
The study was carried out within the framework of the UMNIK grant (project No. 46649/2017).

keywords Synnyrite, dolomite, brucite, thermodynamic evaluation, thermochemical decomposition, kalsilite-leucite concentrate
References

1. Sizyakov V. M. Mining institute and problems of development of aluminum industry in Russia. Zapiski Gornogo Instituta. 2005. Vol. 165. pp. 163–170.
2. Arkhangelskaya V. V. Deposits of synnyrites of Russia. Razvedka i Okhrana Nedr. 2014. No. 6. pp. 20–24.
3. Panina K. I., Bondarenko L. A., Churashev V. N., Yusupov T. S. Synnyrites of Siberia: rationale for expediency of the development. Region: Ekonomika i Sotsiologiya. 1997. No. 3. pp. 48–49.
4. Pat. 1761671 USSR.
5. Sizyakov V. M. Chemical and technological mechanisms of a alkaline aluminum silicates sintering and a hydrochemical sinter processing. Zapiski Gornogo Instituta. 2016. Vol. 217. pp. 102–112.
6. Gorbunova Ye. S., Zakharov V. I., Alishkin A. R. Allround chemical-dressing technology for processing of rischorrites. Obogashchenie Rud. 2011. No. 4. pp.12–16.
7. Rimkevich V. S., Pushkin A. A., Girenko I. V., Leontiev M. A. Perspectives of complex processing the kaolin concentrates by hydrochemical method. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk. 2016. Vol. 18, No. 2. pp. 186–190.
8. Pat. 1421693 USSR.
9. Matveev V. A., Mayorov D. V., Brichkin V. N., Gorbunova E. S. Rischorrites of Khibiny massif is a promising raw material for producing potash fertilizers, alumina and other products. Gorny Informatsionno-Analiticheskiy Byulleten. 2015. Special iss. 19. pp. 146–152.
10. Zhidkov A. Ya., Ushakov A. A., Khrustalev V. K. Kalyuminskoe deposit of synnyrites — the first deposit of ultrapotassic aluminous raw materials of Synnyrskiy massif. Problems of economic development of the Baikal-Amur railway zone. Irkutsk, 1981. pp. 66–72.
11. Silva A. A. S., Medeiros M. E., Sampaio J. A., Garrido F. M. S. Verdete from cedro do abaeté as a source of potassium: characterization, thermal treatment and reaction with CaO. Matéria. 2012. Vol. 17. pp. 1061–1073.
12. Santos W. O., Mattiello E. M., Vergutz L., Costa R. F. Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science. 2016. Vol. 179, Iss. 4. pp. 547–556.
13. Zhang Yi, Wu Jianqing, Rao Pingen, Lv Ming. Low temperature synthesis of high purity leucite. Materials Letters. 2006. Vol. 60, Iss. 23. pp. 2819–2823.
14. Feng W. W., Ma H. W. Thermodynamic analysis and experiments of thermal decomposition for potassium feldspar at intermediate temperatures. J. Chin. Ceram. Soc. 2004. Vol. 32, No. 7. pp. 789.
15. Betekhtin A. G. Course of mineralogy. Moscow: KDU, 2007. 721 p.
16. Rat'ko A. I., Ivanets A. I., Kulak A. I., Morozov E. A., Sakhar I. O. Thermal decomposition of natural dolomite. Neorganicheskie Materialy. 2011. Vol. 47, No. 12. pp. 1502–1507.
17. Korolev V. A., Samarin E. N., Panfilov V. A., Romanova I. V. Sorption properties of brucite and brucite-based clay mixtures. Ekologiya i Promyshlennost’ Rossii. 2016. Vol. 20, No. 1. pp. 18–24.
18. Vladimirov L. P. Thermodynamic calculations of the equilibria of metallurgical reactions. Moscow: Metallurgiya. 1970. 528 p.
19. Binnewies M., Mike E. Thermochemical data of elements and compounds. 2002. p. 928.

Language of full-text russian
Full content Buy
Back