Название |
Complex hydrochemical processing of slime tailings generated in chromite-bearing ore concentration |
Информация об авторе |
«Institute of Metallurgy and Ore Beneficiation» JSC (Almaty, Republic of Kazakhstan):
Dyusenova S. B., Leading Engineer, dusenova_s@mail.ru Kenzhaliev B. K., General Director, Doctor of Engineering Sciences Abdulvaliev R. A., Head of Laboratory, Candidate of Engineering Sciences, rin-abd@mail.ru Gladyshev S. V., Leading Researcher, Candidate of Engineering Sciences, gladyshev.sergey55@mail.ru |
Реферат |
The urgency of solving the problem of processing concentration waste products is not only due to environmental considerations, but also to the demand for increased chromium production. The advanced gravity concentration technologies used for chromite ores enable effectively obtaining chromium concentrates from coarse and medium fractions, while the fine slimes remain practically unprocessed due to the challenges of separating complex minerals into concentrates and waste rock. The possibility of comprehensive processing of concentration tailings for the purpose of recovering rare metals and rareearth elements is also not being considered. This paper presents the processing results for tailings obtained from the fine fraction of –0.2 mm using a complex hydrochemical technology, including leaching in a solution of NH4HSO4. It was established that, during leaching in a solution containing 10 % NH4HSO4, no aluminum, silicon, iron or chromium were recovered into the solution. Upon leaching solution neutralization with an ammonia solution to pH 5.5, a product containing REE and the rare metals of gallium and vanadium was isolated. Further neutralization of the solution to pH 8.5 resulted in isolation of a nickel-cobalt concentrate with the NiO content of 19.9 % and the Co3O4 content of 2.74 %. Subsequent removal of impurities and evaporation of the solution rendered a magnesium sulfate double salt of (NH4)2(Mg(H2O)6)(SO4)2 with the nitrogen content of 6.7 % and the magnesium oxide content of 10.59 %. Alkaline treatment of the leaching cake rendered a chromite concentrate with the Cr2O3 content of 51.3 %. The recovery rates of rare-earth elements and rare metals in the final products were as follows: 73.83 % for rare-earth elements; 63.25 % for Ga2O3; 82.0 % for V2O5; 60.0 % for NiO; and 32.1 % for Co3O4. |
Библиографический список |
1. Ryabin V. A., Popilskiy M. Ya., Soloshenko A. A. Modern technologies of chrome ore processing, neutralization and utilization of toxic waste. Abstracts of the Intern. scientific and technical conf. on processing of technogenic formations. Ekaterinburg, 1997. pp. 59–61. 2. Garkunova N. V., Plyshevskiy Yu. S. Use of industrial wastes containing olivin-serpentine rocks to produce magnesium compounds. Abstracts of the scientific-practical conference «Uralecology Technogen–2003». Ekaterinburg, 2003. 3. Leont’ev L. I., Sheshukov O. Yu., Nekrasov I. V. Analysis and processing of metallurgical waste. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. 2014. No. 4. pp. 8–25. 4. Chrome market 2012: ores and concentrates, chromium and products (World and Kazakhstan). URL: http://www.metalresearch.ru/world_chromium_analysis.html. 5. Pat. 2136376 Russian Federation. 6. Ibraev I. I., Ibraeva O. T., Suyundikov M. M. Chromiumbearing sludges recycling. Metallurg. 2012. No. 10. pp. 28–30. 7. Blajda I. A., Vasil’eva T. V., Baranov V. I. Use of biohydrometallurgical technologies for solving problems of production waste recycling with valuable metals obtaining. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. 2015. No. 3. pp. 75–82. 8. Akar Sen G. Application of full factorial experimental design and response surface methodology for chromite benefication by Knelson concentrator. Minerals. 2016. Vol. 6, Iss. 1. p. 5. DOI: 10.3390/min6010005. 9. Kumar C. R., Tripathy S. K., Rao D. S. Characterisation and pre-concentration of chromite values from plant tailings using floatex density separator. Journal of Minerals & Materials Characterization & Engineering. 2009. Vol. 8, No. 5. pp. 367–378. DOI: 10.4236/jmmce.2009.85033. 10. Tripathy S. K., Ramamurthy Y., Singh V. Recovery of chromite values from plant tailings by gravity concentration. Journal of Minerals & Materials Characterization & Engineering. 2011. Vol. 10, No. 1. pp. 13–25. DOI: 10.4236/jmmce.2011.101002. 11. Tripathy S. K., Banerjee P. K., Suresh N. Magnetic separation studies on ferruginous chromite fine to enhance Cr : Fe ratio. International Journal of Minerals, Metallurgy, and Materials. 2015. Vol. 22, Iss. 3. pp. 217–224. DOI: 10.1007/s12613-015-1064-4. 12. Abdulvaliev R. A., Abdykirova G. Zh., Dyusenova S. B., Imangalieva L. M. Concentration of chromite-containing slimes. Obogashchenie Rud. 2017. No. 6. pp. 15–19. DOI: 10.17589/or.2017.06.03. 13. Gladyshev S. V., Abdulvaliyev R. A., Kenzhaliyev B. K., Dyusenova S. B., Imangaliyeva L. M. Production of chromite concentrate from tailing of ore benefication. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. 2018. No. 1. pp. 12–17. 14. Doronin A. V., Kozlovskikh E. N., Kashcheev I. D., Zemlyanoy K. G., Morozov Yu. P. Development of complex processing of red mud with the use of regenerated sulphate solutions. Proceedings of the XIX International scientific and technical conference «Scientific basis and practice of processing ores and technogenic raw materials». April 23–24, 2014. Ekaterinburg. pp. 120–124. 15. Pat. 2519945 Russian Federation. 16. Nakamoto K. Infrared spectra of inorganic and coordination compounds. Moscow: Mir, 1966. 411 p. 17. Farmer V. C. The infrared spectra of minerals. London: Mineralogical Society, 1974. 539 р. 18. Kazitsyna L. A., Kupletskaya N. B. The use of UV, IR and NMR spectroscopy in organic chemistry. Moscow: Vysshaya Shkola, 1971. 264 p. 19. Ryabin V. A., Kireeva M. V., Berg N. A., Zhitkova T. N., Leontyeva I. A., Kalitina L. N., Ust’yan T. A. Inorganic compounds of chromium. Leningrad: Khimiya, 1981. 208 p. 20. Zelikman A. N., Korshunov B. G. Metallurgy of rare metals. Moscow: Metallurgiya, 1991. 432 p. |