Журналы →  Eurasian mining →  2019 →  №2 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название Detection of crustal deformation anomalies with regard to spatial scale effect
DOI 10.17580/em.2019.02.04
Автор Manevich A. I., Tatarinov V. N., Kolikov K. S.
Информация об авторе

Geophysical Center, Russian Academy of Sciences, Moscow, Russia:

Manevich A. I., Researcher, Post-Graduate Student of the College of Mining, NUST MISIS
Tatarinov V. N., Head of Laboratory, Doctor of Engineering Sciences, v.tatrinov@gcras.ru

 

College of Mining, National University of Science and Technology—MISIS, Moscow, Russia:
Kolikov K. S., Head of Chair, Doctor of Engineering Sciences

Реферат

The current standard criteria for horizontal strains at locations of nuclear power objects are set without regard to distances and observation times. Accordingly, the reference hazardous strain can either be overestimated or underestimated in a test scale of a region. This deteriorates reliability of the engineering safety criteria for satellite observation data on horizontal crustal movements. At the same time, the current legislation recommends taking into account spatial scaling when assessing deformation and velocities of recent crustal movements, though no specific practical guidance is provided. In this connection, this article presents the analysis results for observations over recent crustal movements on a few tens of geodynamic test grounds in the world. The analysis procedure uses the algorithm for discrimination of stain classes, dilation and strain rates with regard to spatial scale effect. The algorithm is based on pattern recognition and enables predicting classes of strain hazard depending on distance or area to which the displacement is normalized. The article presents the analysis procedure and the results of the case-study for a geodynamic test ground located in a tectonically active region of the world.

Ключевые слова Geodynamics, strains, recent crustal movements, GPS, GLONASS, scale effect, pattern recognition
Библиографический список

1. Sadovsky M.A., Pisarenko V. F. Seismic process in a blocky medium. Moscow : Nauka, 1991. 96 p.
2. Kocharyan G. G. Scale effect in seismotectonics. Geodynamics & Tectonophysics. 2014. Vol. 5(2). pp. 353–385.
3. Sherman S. I., Bornyakov S. A., Buddo V. Yu. Dynamic impact zones of faults. Novosibirsk : Nauka, 1983. 112 p.
4. Kuzmin Yu. O. Recent geodynamics of fault zones : faulting in a real-time scale. Geodynamics & Tectonophysics. 2014. Vol. 5, No. 2. pp. 401–443.
5. McCaffrey R. Block kinematics of the Pacific–North America plate boundary in the Southwestern United States from inversion of GPS, seismological, and geologic data. Journal of Geophysical Research. 2005. Vol. 110. B07401. DOI: 10.1029/2004JB003307.
6. Meade B. Present-day kinematics at the India–Asia collision zone. Geology. 2007. Vol. 35. pp. 81–84.
7. Tatarinov V. N., Tatarinova T. A. Inclusion of scale effect in satellite observations over ground surface deformation. Marksheiderskii vestnik. 2012. No. 5. pp. 15–19.
8. Safety Code RB-019-01. Seismic hazard estimation at locations of nuclear power and radiation objects by geodynamic data. Moscow, 2011.
9. Safety Code RB-019-17. Initial seismicity estimation in a region and site of nuclear objects during engineering survey and investigations. Moscow, 2018.
10. Kuzmin Yu. O. Recent geodynamics of dangerous faults. Izvestiya. Physics of the Solid Earth. 2016. No. 5. pp. 709–722.
11. Ulomov V. I. Role of horizontal tectonic movements in seismogeodynamics and seismic hazard prediction. Fizika Zemli. 2004. No. 9. pp. 14–30.
12. Guseva T. V., Mishin A. V., Skovorodkin Yu. P. Present-day movements in different scales. Fizika Zemli. 1996. No. 12. pp. 86–91.
13. GPS data. USGS Earthquake Hazards Program. Available at: https://earthquake.usgs.gov/monitoring/gps (accessed: 01.03.2019).
14. Murray J. R. Svarc J. Global positioning system data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program. Seismological Research Letters. 2017. Vol. 88. pp. 916–925.
15. MAGNET GPS Network. Nevada Geodetic Laboratory. Available at: http://geodesy.unr.edu/magnet.php (accessed: 01.03.2019).
16. Data Repository. Rete Integrata Nazionale GPS. Available at: http://gsac.gm.ingv.it:8080/prototypegsac (accessed: 01.03.2019).
17. GPS: Data & Products. Geodetic Data Archiving Facility. Available at: http://geodaf.mt.asi.it/gps_data_solutions.html (accessed: 01.03.2019).
18. FReDNet DC, Friuli Regional Deformation Network Data Center. Istituto Nazionale di Oceanografia e Geofisica Sperimentale. Dataset 2016.
19. Bruyninx C., Habrich H., Söhne W., Kenyeres A., Stangl G., Völksen C., Enhancement of the EUREF permanent network services and products. Geodesy for Planet Earth. IAG Symposia Series. 2012. Vol. 136. pp. 27–35.
20. EUREF permanent GNSS network. Available at: http://www.epncb.oma.be/ (accessed: 01.03.2019).
21. GNSS time series. NASA. https://sideshow.jpl.nasa.gov/post/series.html (accessed: 01.03.2019).
22. UNAVCO Data Center. Available at: https://www.unavco.org/ (accessed: 01.03.2019).
23. Scripps Orbit and Permanent Array Center (SOPAC). Available at: http://sopac-csrc.ucsd.edu/index.php/sopac/ (accessed: 01.03.2019).
24. GPS Data (USGS Earthquake Hazards Program). Available at: https://earthquake.usgs.gov/monitoring/gps/Southern_California/velocities (accessed: 01.03.2019).
25. Tatarinov V. N., Manevich A. I., Losev I. V. System approach to geodynamic zoning based on artificial neural networks. Gornye nauki i tekhnologii. 2018. No. 3. pp. 14–25. DOI: 10.17073/2500-2018-14-25.

Полный текст статьи Detection of crustal deformation anomalies with regard to spatial scale effect
Назад