Journals →  CIS Iron and Steel Review →  2019 →  #2 →  Back

Casting
ArticleName Development of the conditional activation criterion to evaluate graphite activity
DOI 10.17580/cisisr.2019.02.05
ArticleAuthor T. R. Gilmanshina, I. E. Illarionov, S. I. Lytkina, S. A. Khudonogov
ArticleAuthorData

Siberian Federal University (Krasnoyarsk, Russia):

T. R. Gilmanshina, Cand. Eng., Associate Prof., e-mail: tmilp@rambler.ru
S. I. Lytkina, Cand. Eng., Associate Prof.
S. A. Khudonogov, Senior Lecturer


I. N. Ulyanov Chuvash State University (Cheboksary, Russia):

I. E. Illarionov, Dr. Eng., Prof., Head of the Dept. “Materials science and metallurgical processes”, e-mail: gtr1977@mаil.ru

 

E. N. Zhirkov participated in preparation of experimental materials and scientific data for this article.

Abstract

This paper is aimed at developing an integrated criterion used to evaluate not only the quality of materials, but also the effect of the material preparation method on the activity of the particles. We studied cryptocrystalline graphite in natural and mechanically activated states from the Kureisckoe deposit. Graphite was activated in a planetary centrifugal mill at Mamina Laboratory of Disperse and Nanostructured, Solid, Viscous and Colloid Materials of Siberian Federal University. In the course of the studies, the authors proposed an empirical criterion based on differential scanning calorimetry to evaluate the energy saturation of filling components for non-stick coatings based on activated cryptocrystalline graphite — the conditional activation criterion. The calculated dependence of this criterion on the activation time proved data earlier obtained: the most optimum graphite activation time in the planetary centrifugal mill is 20 minutes.

keywords Graphite, conditional activation criterion, mechanical activation, thermal analysis, apparent activation energy, reduced area of the peak of the oxidation thermal effect, total energy effect
References

1. Illarionov I. E., Vasin Yu. P. Molding materials and mixtures: monograph. Cheboksary : Chuvash State University, 1992. Part 1. 223 p.
2. Illarionov I. E., Strelnikov I. A. Nonstick Coatings for Molds and Cores. Liteyshchik Rossii. 2016. No. 4. pp. 24–25.
3. Gilmanshina T. R., Lytkina S. I., Khudonogov S. A., Kritsky D. Yu. Study on the Parameters of Cryptocrystalline Graphite Processed by Various Methods. Obogashchenie Rud. 2017. No. 1. pp. 15–18.
4. Illarionov I. E., Gilmanshina T. R., Kaftannikov A. S., Nuraliev F. A. Evaluation of the Burning-on on the Surface of Iron Castings. Chernye Metally. 2018. No. 8. pp. 23–28.
5. Illarionov I. E., Gilmanshina T. R., Kovaleva A. A. et al. Destruction Mechanism of Casting Graphite in Mechanical Activation. CIS Iron and Steel Review. 2018. Vol. 15. pp. 15–17.
6. Illarionov I. E., Gilmanshina T. R., Kovaleva A. A., Bratukhina N. A. Understanding the Effect of Structural Defects in Graphite on the Properties of Foundry Coatings. CIS Iron and Steel Review. 2018. Vol. 16. pp. 63–66.
7. Molchanov V. I., Selezneva O. G., Zhirnov E. N. Activation of minerals during a crushing process. Moscow : Nedra, 1988.
8. Mamina L. I. Theoretical basics of mechanical activation of molding materials and development of resource-saving technological materials processes in foundry: abstract of the thesis … of the Doctor of Technical Sciences. Krasnoyarsk: Krasnoyarsk Institute of Non-Ferrous Metals, 1989.
9. Ivanova A. A., Yudina N. V., Savelieva A. V. The Evaluation of Changes in the Composition of Fulvic Acid after Mechanoactivation of Peat by Methods of IR- and PMR-Spectroscopy. Khimiya rastitelnogo syrya. 2014. No. 1. pp. 263–268.
10. Litvintsev V. S., Melnikova T. N., Yatlukova N. G., Litvinova N. M. Mechanical Activation in Ore Preparation Processes. Mining Informational and Analytical Bulletin (scientific and technical journal). 2005. Vol. 12, No. 3. pp. 306–311.
11. Burkova V. N., Yudina N. V., Maltseva E. V., Savelieva A. V. Effect of the Solid-Phase Mechanoactivation on a Functional Composition of Humic Acids from Coals. International Journal of Applied and Fundamental Research. 2015. No. 9. pp. 84–87.
12. Bogatyreva E. V. Development of theory and practice of efficient application of mechanical activation in the technology of hydrometallurgical stripping of oxygen-containing rare metal raw materials: abstract of the thesis … of the Doctor of Technical Sciences. Moscow : NUST MISIS. 2015.
13. Shen T. D., Ge W. Q., Wang K. Y. et al. Structural disorder and phase transformation in graphite produced by ball milling. Nanostructured Materials. 1996. Vol. 1, No. 4. pp. 393–399.
14. Janot R., Guerard D. Ball-milling: the behavior of graphite as a function of the dispersal media. Carbon. 2002. Vol. 40, No. 15. pp. 2887–2896.
15. Guerard D., Janot R. The reactive ball-milling: a new Chimie Douce method. Journal of Metastable and Nanocrystalline Materials. 2004. Vol. 20–21. pp. 311–318.
16. Yusupov T. S., Shumskaya L. G. Study on the Process of Thermal-Oxidative Degradation of Mechanically Activated Brown Coal by a Thermal Analysis Method. Khimiya tverdogo topliva. 2008. No. 5. pp. 47–52.
17. Brown M. E., Maciejewski M., Vyazovkin S. Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta. 2000. Vol. 355. pp. 125–143.
18. Maciejewski M. Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project - the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochimica Acta. 2000. Vol. 355. pp. 145–154.
19. Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project — the light at the end of the tunnel. Thermochimica Acta. 2000. Vol. 355. pp. 155–163.
20. Burnham A.K. Computational aspects of kinetic analysis. Part D: The ICTAC kinetics project — multi-thermal-history model-fitting methods and their relation to isoconversional methods. Thermochimica Acta. 2000. Vol. 355. pp. 165–170.
21. Roduit B. Computational aspects of kinetic analysis. Part E: The ICTAC Kinetics Project — numerical techniques and kinetics of solid state processes. Thermochimica Acta. 2000. Vol. 355. pp. 171–180.
22. Vyazovkin S., Burnham A. K., Cria do J. M. et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta. 2011. Vol. 520. pp. 1–19.
23. Vyazovkin S., Chrissafis K., Di Lorenzo M. L. et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochimica Acta. 2014. Vol. 590. pp. 1–23.
24. Zemlyanoy K. G., Kashcheev I. D., Ustyantsev V. M. Study on the Possibility to Estimate Technological Properties of Graphite. Novye ogneupory. 2015. No. 3. pp. 101–108.
25. Boeva N. M., Bocharnikova Yu. I., Nasedkin V. V., Belousov P. E. Thermal Analysis as an Express Method to Evaluate Qualitative and Quantitative Parameters of Natural and Synthesized Organoclay. Rossiyskie nanotekhnologii. 2013. Vol. 8, No. 3–4. pp. 54–57.
26. Muravyeva N. V., Pivkina A. N. New concept of thermokinetic analysis with artificial neural networks. Thermochimica Acta. 2016. Vol. 37, No. 6. pp. 69–73.
27. Burnham A. K. Obtaining reliable phenomenological chemical kinetic models for real-world applications. Thermochimica Acta. 2014. Vol. 597. pp. 35–40.
28. Gilmanshina T. R., Lytkina S. I., Khudonogov S. A. et al. Development of the state-of-the-art technologies to improve the quality of cryptocrystalline graphite. Nanosistemy, nanomaterialy, nanotekhnologii. 2018. Vol. 16, No. 1. pp. 83–101.

Full content Development of the conditional activation criterion to evaluate graphite activity
Back