Журналы →  CIS Iron and Steel Review →  2019 →  №2 →  Назад

Coating
Название Application of Zr–Si–B electrodes for electrospark alloying of Inconel 718 in vacuum, argon and air environment
DOI 10.17580/cisisr.2019.02.10
Автор A. E. Kudryashov, Ph. V. Kiryukhantsev-Korneev, M. I. Petrzhik, E. A. Levashov
Информация об авторе

National University of Science and Technology “MISiS” (Moscow, Russia)

A. E. Kudryashov, Cand. Eng., Leading Researcher, Scientific-Educational Center of SHS MISiS-ISMAN, e-mail: aekudr@yandex.ru
Ph. B. Kiryukhantsev-Korneev, Cand. Eng., Associate Prof., Department of Powder Metallurgy and Functional Coatings; Leading Researcher, Scientific-Educational Center of SHS MISiS-ISMAN, e-mail: kiruhancev-korneev@yandex.ru
M. I. Petrzhik, Dr. Eng., Prof., Scientific-Educational Center of SHS MISiS-ISMAN
E. A. Levashov, Dr. Eng., Prof., Head of the Department of Powder Metallurgy and Functional Coatings; Director, Scientific-Educational Center of SHS MISiS-ISMAN

Реферат

This study focused on understanding the effect of various media (such as vacuum, argon and air) on the formation, structure, composition and properties of electrospark coatings deposited on the nickel alloy EP 718-ID (an equivalent of Inconel 718). The ZrB2 — 20% Si electrodes were produced by self-propagating high-temperature synthesis. A hand tool with a vibrating electrode was used to form the coatings in air or argon, whereas the coatings deposited in vacuum were produced with the help of an automatic tool with a rotating electrode. It was established that when electrospark alloying is carried out in vacuum or argon a consistent weight gain is observed on the cathode, and the resultant coatings are uniform and have minimum drawbacks. Coatings deposited in air are associated with eroded substrate material and a high degree of imperfection. The coatings deposited on the nickel alloy have a thickness of 20–25 μm, a hardness of 12.6–18.8 GPa, and a Young modulus of 237.8–351.4 GPa. The roughness of the coatings is 5.8–7.4 μm. The coatings deposited in argon and in vacuum were found to have the maximum hardness and Young modulus. The following compounds dominate in coatings depending on the medium: zirconium diboride ZrB2 for argon, nickel silicide Ni(1 — x)Si(x) and zirconium diboride ZrB2 for vacuum, and zirconium dioxide ZrO2 and nickel silicide Ni(1 — x)Si(x) for air. The coatings deposited in vacuum have the maximum oxidation resistance. It is demonstrated that for quality coatings deposited on nickel alloys the electrode materials Zr–Si–B should be used for ESA in argon or vacuum.

This work was carried out with financial support from the Ministry of Education and Science of the Russian Federation in the framework of state assignment No.11.7172.2017/8.9. The authors would like to thank N.V. Shvyndina, T. A. Sviridova, A. N. Sheveiko for their support during the study.

Ключевые слова Coating, electrospark alloying, vacuum, argon, air, nickel-base alloys, electrodes, phase composition, silicides, borides, oxidation resistance
Библиографический список

1. High temperature and wrought alloys for modern and prospective gas turbine engines. Electronic resource: www.viam.ru/public/files/2007/2007-204757.pdf
2. Bazyleva O. A., Arginbaeva E. G., Lutskaya S. A. Raising the corrosion resistance of heat-resistant nickel alloys: A review. Trudy VIAM. 2018. No. 4 (64). pp. 3–8.
3. Poklad V. A., Shkretov Yu. P., Abraimov N. V. Coatings designed to protect turbine rotor blades from high-temperature gas corrosion. Dvigatel. 2010. No. 4 (70). pp. 2–4.
4. Hocking M., Vasantasree V., Sidky P. Metallic and ceramic coatings: Production, properties and applications. Translated from English by Lazarev E. M. et al. Moscow : Mir. 2000. 516 p.
5. Podchernyaeva I. A., Panasyuk A. D., Teplenko M. A., Podolskii V. I. Protective coatings on heat-resistant nickel alloys (review). Powder Metallurgy and Metal Ceramics. 2000. Vol. 39. No. 9-10. pp. 434–444.
6. Kelly P. J., Arnell R. D. Magnetron sputtering: a review of recent developments and applications. Vacuum. 2000 (56). pp. 159–172.
7. Levashov E. A., Shtansky D. V., Kiryukhantsev-Korneev Ph. V., Petrzhik M. I., Tyurina M. Ya., Sheveiko A. N. Multifunctional Nanostructured Coatings: Formation, Structure, and the Uniformity of Measuring Their Mechanical and Tribological Properties. Russian Metallurgy (Metally). 2010. No. 10. pр. 917–935.
8. Kiryukhantsev-Korneev Ph. V., Iatsyuk I. V., Shvindina N. V., Levashov E. A., Shtansky D. V. Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo–Si–B and Mo–Al–Si–B coatings. Corrosion Science. 2017. (123). pp. 319–327.
9. Kiryukhantsev-Korneev Ph. V., Lemesheva M. V., Shvindina N. V., Levashov E. A., Potanin A. Yu. Structure, Mechanical Properties, and Oxidation Resistance of ZrB2, ZrSiB, and ZrSiB/SiBC Coatings. Protection of Metals and Physical Chemistry of Surfaces. 2018. Vol. 54, No. 6. pp. 1147–1156.
10. Kiryukhantsev-Korneev Ph. V., Sytchenko A. D., Kudryashov A. E., Levashov E. A. Protective coatings produced by electrospark deposition with TiCNiCr–(Eu2O3) electrodes. CIS Iron and Steel Review. 2018. Vol. 16. pp. 57-62.
11. Kudryashov A. E., Doronin O. N., Zamulaeva E. I., Levashov E. A., Shvindina N. V. Application of SHS electrode materials and technology of electrospark deposition for strengthening of rolling rolls. Chernye Metally. 2013. No. 10. pp. 61-68.
12. Levashov E. A., Kudryashov A. E., Sheveiko A. N., Vakaev P. V., Zamulaeva E. I., Stolin A. M. On successful application of electrospark alloying in metallurgy and mechanical engineering. Tsvetnye Metally. 2003. No. 6. pp. 73–77.
13. Podchernyaeva I. A., Yurechko D. V., Bochko A. V., Sedlyar G. A., Kostenko L. M. Effect of electrospark deposition of Al–Si alloy on the wear resistance of a hard-alloy cutting plate. Powder Metallurgy and Metal Ceramics. 2012. Vol. 51. No. 3-4. pp. 198–203.
14. Radek N., Antoszewski K., Bronek J., Fabian P., Pietraszek J. Properties of the electro-spark deposited coatings - technology and applications. Materials Science Forum. 2015. (818). pp. 61–64.
15. Levashov E. A., Kudryashov A. E., Zamulaeva E. I., Pogozhev Yu. S., Sanin V. N., Andreev D. E., Yukhvid V. I. Features of Formation and the Structure, Composition, and Properties of Electrospark Coatings on the ZhS6U Nickel Alloy with the Use of the KhTN-61 SHS-Ts Alloy. Russian Journal of Non-Ferrous Metals. 2009. Vol. 50. No. 5. pp. 534–539.
16. Nikolenko S. V., Syuy N. A., Burkov A. A. Investigation of microstructure and properties of coatings on the steel 45, applied by TiC–Ni–Mo based electric discharge deposition. Tsvetnye Metally. 2017. No. 4. pp. 69–75.
17. Burkov А. А., Kulik М. А., Krutikova V. O. Characteristics of Ti–Si Coatings on Ti6Al4V Alloy Subjected to Electrospark Granules Deposition. Tsvetnye Metally. 2019. No. 4. pp. 54–59.
18. Pyachin S. A., Burkov A. A. Nitridation of titanium surface by electric charge treatment. Tsvetnye Metally. 2017. No. 4. pp. 62–68.
19. Shtansky D. V., Batenina I. V., Yadroitsev I. A. et al. A new combined approach to metal-ceramic implants with controllable surface topography, chemistry, blind porosity, and wettability. Surface & Coatings Technology. 2012. (208). pp. 14–23.
20. Kudryashov A. E., Lebedev D. N., Potanin A. Yu., Shvyndina N. V., Sukhorukova I. V., Shtanskiy D. V., Levashov E. A. Deposition kinetics, structure and properties of electrospark deposited Cr-Al-Si-B coatings installed on heat-resistant nickel alloy. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2015. No. 4. pp. 59–70.
21. Kudryashov A. E., Lebedev D. N., Potanin A. Yu., Levashov E. A. Structure and properties of coatings produced by pulsed electrospark deposition on nickel alloy using Mo–Si–B electrodes. Surface and Coatings Technology. 2018. Vol. 335. pp. 104–117.

22. Ebrahimnia M. F., Ghaini M., Xie Y. J., Shahverdi H. Microstructural characteristics of the built up layer of a precipitation hardened nickel based superalloy by electrospark deposition. Surface & Coatings Technology. 2014. (258). pp. 515–523.
23. Yu-jiang Xie, Mao-cai Wang. Epitaxial MCrAlY coating on a Ni-base superalloy produced by electrospark deposition. Surface & Coatings Technology. 2006 (201). pp. 3564–3570.
24. Enrique P. D., Jiao Z., Zhou N. Y., Toyserkani E. Dendritic coarsening model for rapid solidification of Ni-superalloy via electrospark deposition. Journal of Materials Processing Technology. 2018. Vol. 258. pp. 138–143.
25. Wang D., Wang W., Wang M. et al. Effect of operating voltage on microstructure and microhardness of NiCoCrAlYTa-Y2O3 composite coatings on single crystal superalloy produced by electrospark deposition. Surface and Coatings Technology. 2019. Vol. 358. pp. 628–636.
26. Xie Y., Wang D., Wang M., Ye W. Evaluation of three kinds of MCrAlY coatings produced by electrospark deposition. Transactions of Nonferrous Metals Society of China. 2016. (26). p. 1647.
27. Cao G., Wang Y., Tang G. Properties of NiCrAlY coatings fabricated on superalloy GH4169 by electrospark deposition. The International Journal of Advanced Manufacturing Technology. 2018. Vol. 96, Issue 5–8. pp. 1787–1793.
28. Ribalko A. V., Sahin O., Korkmaz K. A modified electrospark alloying method for low surface roughness. Surface and Coatings Technology. 2009. Vol. 203, Iss. 23. pp. 3509–3515.
29. Korkmaz K. Investigation and characterization of electrospark deposited chromium carbide-based coating on the steel. Surface and Coatings Technology. 2015. Vol. 272. pp. 1–7.
30. Luo C., Dong S., Xiong X., Zhou N. Mass loss of copper alloy electrode during TiB2 coating by electrospark deposition. Surface and Coatings Technology. 2009. (203). pp. 3333–3337.
31. Johnson R. N., Sheldon G. L. Advances in the electrospark deposition coating process. Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films. 1986. pp. 2740–2746.
32. Kuptsov S. G., Fominykh M. V., Mukhinov D. V., Magomedova R. S., Nikonenko E. A. Electrospark alloying of the AL9 alloy with hard alloys. Rasplavy. 2015. No. 4. pp. 90–94.
33. Verkhoturov A. D., Konevtsov L. A., Shpilev A. M. et al. Contribution of electrospark alloying to the oxidation resistance of hard tungsten alloys. Powder Metallurgy and Metal Ceramics. 2008. Vol. 47, No. 1–2. pp. 112–115.
34. Ageeva E. V., Latypov R. A., Ageev E. V., Altukhov A. Yu., Karpenko V. Yu. Characteristics of electrospark deposited coatings produced with electrodes made of high-speed steel powders. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2015. No. 2. pp. 62–65.
35. Astapov I. A., Eremina K. P., Teslina M. A. et al. Structure and properties of functional coatings electrospark deposited on 20Kh13 steel. Obrabotka Metallov (tekhnologiya, oborudovanie, instrumenty). 2013. No. 4 (61). pp. 12–18.
36. Podchernyaeva I. A., Verkhoturov A. D., Vostrikov Ya. A., Konevstov L. A. Deposition and properties of composite coatings installed by electrospark alloying on ShKh15 and R6M5 steels using new ceramic materials. Uprochnyayushchie tekhnologii i pokrytiya. 2015. No. 2(122). pp. 34–39.
37. Gitlevich A. E., Mikhaylov V. V., Parkanskiy N. Ya. et al. Electrospark alloying of metallic surfaces. Kishinev : Shtiintsa, 1985. 195 p.
38. Grigoriev O. N., Frolov G. A., Evdokimenko Yu. I., Kisel V. M., Panasyuk A. D., Melakh L. M., Kotenko V. A., Koroteev A. V. Ultrahigh-temperature ceramics for aerospace engineering. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. 2012. No. 8(95). pp. 119–128.
39. Pogozhev Yu. S., Iatsyuk I. V., Potanin A. Yu. et al. The kinetics and mechanism of combusted Zr-B-Si mixtures and structural features of ceramics based on zirconium boride and silicide. Ceramics International. 2016. Vol. 42. pp. 16758–1676.
40. Mikhailov V. V., Gitlevich A. E., Verkhoturov A. D., Mikhailyuk A. I., Belyakov A. V., Konevtsov L. A. Electrospark alloying of titanium and its alloys: the physical, technological, and practical aspects. Part 1. The peculiarities of the mass transfer and the structural and phase transformations in the surface layers and their wear and heat resistance. Surface Engineering and Applied Electrochemistry. 2013. Vol. 49. No. 5. pp. 373–395.
41. Sheveyko A. N., Kuptsov K. A., Kiryukhantsev-Korneev Ph. V., Levashov E. A., Shtansky D. V. Hybrid Technology Combining Vacuum Electrospark Alloying, Cathodic Arc Evaporation and Magnetron Sputtering for the Deposition of Hard-Wear Resistant Coatings. Russian Journal of Non-Ferrous Metals. 2019. Vol. 60, No. 5, pp. 598–607.
42. Safronov I. I., Tsurkan I. V., Fateev V. V., Semenchyuk A. V. Electroerosion processes on electrodes and the microstructural and phase composition of the alloyed layer. Chisinau: Stiinta, 1999. 591 p.
43. Kiryukhantsev-Korneev F. V. Possibilities of Glow Discharge Optical Emission Spectroscopy in the Investigation of Coatings. Russian Journal of Non-Ferrous Metals. 2014. Vol. 55. No. 5. pp. 494–504.
44. Sorokin L. I. Weldability of heat-resistant alloys finding application in aircraft gas turbine engines. Svarochnoe proizvodstvo. 1997. No. 4. pp. 1–21.
45. Drits M. E. Properties of the elements — Reference book. Metallurgiya, 1985. 672 p.

Полный текст статьи Application of Zr–Si–B electrodes for electrospark alloying of Inconel 718 in vacuum, argon and air environment
Назад