Journals →  Obogashchenie Rud →  2019 →  #6 →  Back

BENEFICIATION PROCESSES
ArticleName Biooxidation of persistent gold-bearing ore concentrate of the Bestobe deposit
DOI 10.17580/or.2019.06.02
ArticleAuthor Bulaev A. G., Boduen A. Ya., Ukraintsev I. V.
ArticleAuthorData

Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences (Moscow, Russia):

Bulaev A. G., Head of Laboratory, Leading Researcher, Candidate of Biological Sciences, bulaev.inmi@yandex.ru

 

Saint Petersburg Mining University (Saint Petersburg, Russia):
Boduen A. Ya., Deputy Head of Chair, Associate Professor, Candidate of Engineering Sciences

 

JV CJSC «IVS» (Saint Petersburg, Russia):
Ukraintsev I. V., Director of the Department, Candidate of Chemical Sciences

Abstract

The aim of the work was to establish the feasibility of processing refractory gold-bearing pyrite-arsenopyrite flotation concentrate of ore taken from the Bestobe deposit using vat biooxidation. The concentrate contained 31.38 % of pyrite and 15.6 % of arsenopyrite. The recovery of gold in cyanidation was 43 %. For the biooxidation, a mixed culture of acidophilic microorganisms was used. Respective concentrate biooxidation was carried out continuously in laboratory reactors at 40 °C; the residence time was five days. The liquid to solid ratio of the slurry was 6.7 in the first option and 5 in the second option. The concentrate was subjected to cyanidation after biooxidation to establish its effect on gold recovery, and the chemical composition of the product was analyzed. In the first option, the oxidation degree was 78.9 % for sulfide sulfur and 77.8 and 84.1 % for pyrite and arsenopyrite, respectively. The oxidation degree in the second option was 62.4 % for sulfide sulfur and 58.4 and 82.4 % for pyrite and arsenopyrite, respectively. Cyanidation of 48 hours allowed recovering 92.5 and 93.5 % of gold from the bio-cakes obtained for the first and second options, respectively. The cyanide consumption was 26 and 32 kg/t. The results indicate that vat biooxidation is a promising technology for the processing of refractory sulfide ore concentrates from the Bestobe deposit, since it allows significantly increasing gold recovery by cyanidation while maintaining the process parameters of the biooxidation process (temperature, slurry density, residence time) used at existing industrial enterprises.
This work was carried out as part of joint research project No. 07-01-17 of ZAO SP IVS and the Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences with the support of the Russian Ministry of Education and Science.

keywords Biohydrometallurgy, acidophilic microorganisms, biooxidation, refractory sulfide concentrates, noble metals, pyrite, arsenopyrite, cyanide
References

1. Safronov Yu. G. Unconventional types of gold ore raw materials in Russia. Vestnik Rossiyskoy Akademii Nauk. 1995. Vol. 65, No. 9. pp. 790–806.
2. Melnichuk M. S., Petrov G. V., Fokina S. B., Zotova I. E. Enhancing optimal performance of the platinum concentrates by reduction sulfuric acid. ActaTechnica CSAV (Ceskoslovensk Akademie Ved). 2018. Vol. 63, Iss. 3. pp. 467–474.
3. Litvinova N. M., Aleksandrova T. N., Lavrik N. A. Methods of reduction of fine gold loss in placers. Gornyi Zhurnal. 2015. No. 2. pp. 65–68. DOI: 10.17580/gzh.2015.02.12.
4. Aleksandrova T. N., Heide G., Afanasova A. V. Assessment of refractory gold-bearing ores based on interpretation of thermal analysis data. Zapiski Gornogo Instituta. 2019. Vol. 235. pp. 30–37.
5. Aleksandrova T. N., Afanasova A. V. Fine-dispersed particles of noble metals in sulphide carbonaceous ores and its beneficiation prospects. Proc. of the IMPC–2018. Pt. 5. Processing of fines and slimes. Paper 488. pp. 149–157. USB-flash drive.
6. Gorain B. K., Kondos P. D., Lakshmanan V. I. Innovations in gold and silver processing. Innovative process development in metallurgical industry: Concept to commission. Eds. V. I. Lakshmanan, R. Roy, V. Ramachandran. Berlin–Heidelberg: Springer Verlag, 2015. pp. 393–428.
7. Zolotarev F. D., Aleksandrova T. N., Bogorodskiy A. V., Zhadovskiy I. T. Use of halogen containing noble metal solvents in pressure oxidation technology. Tsvetnye Metally. 2015. No. 10. pp. 60–63. DOI: 10.17580/tsm.2015.10.10.
8. Aleksandrova T. N., Romashev A. O., Semenikhin D. N. Mineralogic and technologic aspects and advanced methods of intensification of sulfide gold ore beneficiation. Metallurg. 2015. No. 4. pp. 53–59.
9. Gurman M. A., Aleksandrova T. N., Shcherbak L. I. Flotation of low-grade gold- and carbon-bearing ore. Gornyi Zhurnal. 2017. No. 2. pp. 70–74. DOI: 10.17580/gzh.2017.02.13.
10. Johnson D. B. Biomining — biotechnologies for extracting and recovering metals from ores and waste materials. Current Opinion in Biotechnology. 2014. Vol. 30. pp. 24–31.
11. Harrison S. T. L. Biotechnologies that utilize acidophiles. Acidophiles: Life in extremely acidic environments. Eds. R. Quatrini, D. B. Johnson. Norfolk–Caister: Academic Press, 2016. pp. 265–284.
12. Bulaev A. G., Pershina E. V., Ukraintsev I. V. State of development of modern biohydrometallurgical technologies and prospects of their use in Russia. Tsvetnye Metally. 2016. No. 10. pp. 29–35. DOI: 10.17580/tsm.2016.10.04.
13. Smart M., Huddy R. J., Edward C. J., Fourie C., Shumba T., Iron J., Harrison S. T. L. Linking microbial community dynamics in BIOX® leaching tanks to process conditions: Integrating lab and commercial experience. Solid State Phenomena. 2017. Vol. 262. pp. 38–42.
14. Bulaev A., Belyi A., Panyushkina A., Solopova N., Pivovarova T. Microbial population of industrial biooxidation reactors. Solid State Phenomena. 2017. Vol. 262. pp. 48–52.
15. Mahmoud A., Cézac P., Hoadley A. F. A., Contaminea F., D'Hugues P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. International Biodeterioration & Biodegradation. 2017. Vol. 119. pp. 118–146.
16. Sovmen V. К., Gus’kov V. N., Belyi А. V., Kuzina Z. P., Drozdov S. V., Savushkina S. I., Mayorov А. М., Zakrevskiy М. P. Processing of gold-bearing ores using bacterial oxidation in the Far North. Novosibirsk: Nauka, 2007. 144 p.
17. Gericke M., Neale J. W., van Staden P. J. A Mintek perspective of the past 25 years in minerals bioleaching. Journal of the Southern African Institute of Mining and Metallurgy. 2009. Vol. 109. pp. 567–585.
18. van Aswegen P. C., van Niekerk J., Olivier W. The BIOX® process for the treatment of refractory gold concentrate. Biomining. Berlin–Heidelberg: Springer Verlag, 2007. pp. 1–35.
19. Olivier J. W., van den Heuvel C. A., Jardine J. G. Application of GIII design principles during the RUNRUNO BIOX® plant development. [Electronic resource]. URL: https://remote.misis.ru/courses/176/files/8331 (Rus-MINEX-2014-Application-of-BIOX-GIII-Principles-paper.pdf.
20. van Nikerk Ya., Olivier V., van Buuren К., Ritasalo Т. State of the art BIOX®, ASTER™ and HiTeCC technologies [Electronic resource]. URL: http://zolteh.ru/technology_equipment/sovremennoe-sostoyanie-tehnologij-biox-aster-ihitecc/ (accessed: 22.11.2019).
21. Karavayko G. I., Sedelnikova G. V., Aslanukov R. Ya., Savari Е. Е., Panin V. V., Adamov E. V., Kondrat’eva T. F. Gold and silver biohydrometallurgy. Tsvetnye Metally. 2000. No. 8. pp. 20–26.
22. Belyi A., Chernov D., Solopova N. Production development of Olimpiadinskoe gold processing plant through BIONORD® technology processing. Solid State Phenomena. 2017. Vol. 262. pp. 12–17.
23. Gold production. URL: https://ngmk.uz/ru/factory/zoloto (accessed: 22.11.2019).
24. Suzdal. URL: www.nordgold.com/ru/operations/production/suzdal/ (accessed: 22.11.2019)
25. Bulaev A. G., Kanaeva Z. K., Kanaev A. T., Kondrat’eva T. F. Biooxidation of a double-refractory gold-bearing sulfide ore concentrate. Mikrobiologiya. 2015. Vol. 84, No. 5. pp. 561–569.

Language of full-text russian
Full content Buy
Back