Journals →  Obogashchenie Rud →  2020 →  #4 →  Back

BENEFICIATION PROCESSES
ArticleName Selective flotation of copper-lead concentrates using iron-containing reagents
DOI 10.17580/or.2020.04.02
ArticleAuthor Turysbekov D. K., Mukhanova A. A., Narbekova S. M., Musina M. M.
ArticleAuthorData

Satbayev University, JSC «Institute of Metallurgy and Ore Beneficiation» (Almaty, Kazakhstan):

Turysbekov D. K., Leading Researcher, Candidate of Engineering Sciences, dula80@mail.ru
Mukhanova A. A., Researcher, ainura-muhanova@mail.ru
Narbekova S. M., Researcher, s.narbekova@mail.ru
Musina M. M., Junior Researcher

Abstract

The flotation process conditions for the polymetallic ore of the Ridder-Sokolny deposit (East Kazakhstan region) have been improved with the use of a magnetite-based iron-containing reagent. A selective flotation process was tested, including sodium sulfide desorption and agitation for ten minutes using an iron-containing reagent. All cleaner operations were carried out in the range of pH values of 5.6 to 5.8. In the separation of the bulk copper-lead concentrate, an iron-containing powdered reagent based on iron oxides was tested. This reagent is used to depress lead minerals, which eliminates the sulfite technology of selective separation of non-ferrous sulfides, as well as reduces the reagent consumption. Effective indicators have been established for the separation of copper-lead concentrate using an iron-containing reagent based on magnetite:
— the mass fraction of copper of 23.6 % with the recovery of 81.3 % for the copper concentrate;
— the mass fraction of lead 36.3 % with the recovery of 93.1 % for the lead concentrate.
The use of a natural iron-based reagent allows completely eliminating the sulfite technology and improving the recovery for the lead concentrate by an average of 3.0 %. Respective laboratory studies have demonstrated the expediency of using this magnetite-based reagent instead of sodium sulfite and iron sulfate in the processing of polymetallic ores.

keywords Processing, polymetallic ore, flotation, iron-containing reagent, recovery, separation, copper concentrate, lead concentrate
References

1. Ignatkina V. А., Bocharov V. А., Milovich F. O., Ivanova P. G., Khachatryan L. S. Base metals sulfides flotation
response increase with application of sulfhydric collectors combinations. Obogashchenie Rud. 2015. No. 3. pp. 18–24. DOI: 10.17580/or.2015.03.03.
2. Bakinov K. G. Methods for separating lead-copper concentrates. Obogashchenie Rud. 1962. No. 5. pp. 16–22.
3. Tusupbayev N. K., Bekturganov N. S., Turysbekov D. K., Syеmushkina L. V., Мukhanova А. А. Bulk copper-lead-zinc concentrate selection technology improvement. Obogashchenie Rud. 2013. No. 6. pp. 12–17.
4. Bocharov V. A., Ignatkina V. A., Lapshina G. A., Khachatryan L. S. Development of technology of complex
processing of refractory pyrite polymetallic ores of nonferrous metals. Tsvetnye Metally. 2018. No. 4. pp. 27–34. DOI: 10.17580/tsm.2018.04.03.
5. Kosherbayev K. T. Selective flotation technology for minerals from bulk sulphide concentrates. Proceedings of the Kazakh Polytechnic Institute. Iss. 2. Metallurgy and metal science. Alma-Ata, 1975. pp. 114–119.
6. Turysbekov D. K., Semushkina L. V., Narbekova S. M., Mukhanova A. A., Kaldybayeva Zh. A. Study of the possibility of using waste from wine-alcogol production in the selective separation of collective copper-lead concentrate. Kompleksnoye Ispolzovanie Mineralnogo Syr'ya. 2018. No. 2. pp. 20–27. DOI: 10.31643/2018/6445.3.
7. Bakinov K. G. Investigation of the stability of the Fe2+–SO23– system used for the selection of sulfides. Tsvetnye Metally. 1974. No. 7. pp. 93–96.
8. Shumskaya E. N., Poperechnikova O. Yu., Kuptsova A. V. Features of complex ore processing technology. Gornyi Zhurnal. 2016. No. 11. pp. 39–48. DOI: 10.17580/gzh.2016.11.08.
9. Lesnikova L. S., Datsiyev M. S., Sisina A. N., Chikildin D. Ye. Laboratory studies to develop a new method for treatment of bulk sulfide concentrate before selective separation. Tsvetnye Metally. 2020. No. 6. pp. 28–32. DOI: 10.17580/tsm.2020.06.04.
10. Bocharov V. A., Ignatkina V. A., Makavetskas A. R., Kayumov А. А. Qualitative-quantitative distribution of structures of mineral aggregates of sulfides in polymetallic ore during flotation. Tsvetnye Metally. 2019. No. 12. pp. 14–21. DOI: 10.17580/tsm.2019.12.02.
11. Cao Z., Chen X., Peng Y. The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering. 2018. Vol. 119. pp. 93–98.
12. Min Sun, Ning-Ning Wu, Lin-Feng Zhai, Xiao-Rui Ru. Manipulate an air–cathode fuel cell toward recovering highly active heterogeneous electro-Fenton catalyst from the Fe(II) in acid mine drainage. Minerals Engineering. 2015. Vol. 84. pp. 1–7.
13. Chanturiya V. A., Kenzhaliev B. K., Lozhnikov S. S., Amirova M. D., Bortsov V. D. Improvement of pyritepolymetallic deposits ores beneficiation technology. Tsvetnye Metally. 2005. No. 1. pp.16–19.
14. Bocharov V. A., Ignatkina V. A., Kayumov A. A., Makavetskas A. R., Fishchenko Y. Y. Influence of structural features and nature of interaction between minerals on the selection of methods for lead-bearing ore separation. Journal of Mining Science. 2018. Vol. 54. pp. 821–830.
15. Karnaukhov S. N., Plyasovitsa S. S., Ivanova N. V. Research of skarn deposit copper ore flotation technology. Obogashchenie Rud. 2018. No. 2. pp. 19–22. DOI: 10.17580/or.2018.02.04.
16. Haiyun X., Rui S., Jizong W., Dongxia F., Likun G. A case study of enhanced sulfidization flotation of lead oxide ore: influence of depressants. Minerals. 2020. Vol. 10, Iss. 2. DOI: 10.3390/min10020095.
17. Jia N., Wang H. G., Zhang M., Guo M. Selective and efficient extraction of zinc from mixed sulfide-oxide zinc and lead ore. Mineral Processing and Extractive Metallurgy Review. 2016. Vol. 37, Iss. 6. pp. 418–426.
18. Cao Z., Chen X. M., Peng Y. J. The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering. 2018. Vol. 119. pp. 93–98.
19. Muhammad B. H., Lana A., Syed M. S. Flotation behavior of complex sulfide ores in the presence of biodegradable polymeric depressants. International Journal of Polymer Science. Vol. 2017. Article ID 4835842. 9 p. DOI: 10.1155/2017/4835842.
20. Turysbekov D. K., Semushkina L. V., Narbekova S. M., Mukhanova A. A. Studies on the use of iron-containing reagents in the separation of bulk copper-lead concentrates. Obogashchenie Rud. 2019. No. 4. pp. 13–19. DOI: 10.17580/or.2019.04.03.
21. Vlasov A. G., Florinskaya V. A., Dutova K. P., Morozov V. N., Smirnova E. V. Infrared spectra of inorganic glasses and crystals. Leningrad: Khimiya, 1972. 304 p.
22. Minerals library of FT-IR spectra (600 spectra) (catalog number 834-025700). Thermo Fisher Scientific Inc. 2008.

Language of full-text russian
Full content Buy
Back