Journals →  Obogashchenie Rud →  2021 →  #1 →  Back

BENEFICIATION PROCESSES
ArticleName Fine hydraulic screening for staged separation of titanium-magnetite concentrate
DOI 10.17580/or.2021.01.02
ArticleAuthor Pelevin A. E., Sytykh N. A.
ArticleAuthorData

Ural State Mining University (Ekaterinburg, Russia):

Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor, a-pelevin@yandex.ru

 

EVRAZ KGOK (Kachkanar, Russia):
Sytykh N. A., Head of Quality Control Department

Abstract

This article covers the applications of fine hydraulic screening for the staged separation of titanium-magnetite concentrates upstream of the last grinding stage and provides an evaluation of its process efficiency options for the Kachkanarsky GOK. In all screen operating modes tested, the mass fraction of iron in the undersize was higher than its mass fraction in the oversize, but failed to reach the target value for the concentrate of 61 %. Therefore, the undersize must be subjected to additional magnetic concentration. Staged separation of the concentrate by fine screening allows either to improve concentrator performance (by up to 10 %) or to increase the concentration process indicators without changing the grinding equipment volume. In this case, the undersize yield averages 55 %. The use of the staged concentrate separation technology with fine screening at constant process parameters and steady factory performance allows reducing the tertiary mill volume in relative terms, not exceeding half of the undersize yield from the operation, which shall be 65–70 %. The minimum permissible values of the mass fraction of iron and of the –0.071 mm class in the screen feed and the undersize must be ensured for obtaining the required concentrate grade. The values of these indicators depend on the material composition of the ore and the concentration process used.

keywords Hydraulic screening, titanium-magnetite concentrate, undersize, mass fraction of solids, mass fraction of iron, grinding, performance
References

1. Karmazin V. V., Andreev V. G., Palin I. V., Zhilin S. N., Pozharskiy Yu. M. Development of equipment for the technology of full-stage beneficiation of magnetite quartzite. Gornyi Zhurnal. 2010. No. 12. pp. 85–89.
2. Karmazin V. V., Sinelnikova N. G., Loginova L. A., Eputaev G. A., Danilova M. G. Investigation of the stadial separation process in separators with a magnetic system having magnets of different heights. Gorny Informatsionno-analiticheskiy Byulleten'. 2007. No. 9. pp. 310–315.
3. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019. No. 6. pp. 19–24. DOI: 10.17580/or.2019.06.04.
4. Pelevin A. E., Sytykh N. A. Iron concentrate stage separation by means of drum magnetic separator with modified separating bath. Obogashchenie Rud. 2016. No. 4. pp. 10–15. DOI: 10.17580/or.2016.04.02.
5. Sadeghi M., Bazin C., Renaud M. Radial distribution of iron oxide and silica particles in the reject flow of a spiral concentrator. International Journal of Mineral Processing. 2016. Vol. 153. pp. 51–59.
6. Pat. 2241544 Russian Federation.
7. Vaisberg L. A., Korovnikov A. N. Fine screening as an alternative to hydraulic classification by size. Obogashchenie Rud. 2004. No. 3. pp. 23–34.
8. Vaisberg L. A., Korovnikov A. N., Trofimov V. A. Innovative re-equipment of screening circuits (to commemorate the 100th anniversary of the Mekhanobr Institute). Gornyi Zhurnal. 2017. No. 1. pp. 11–17. DOI: 10.17580/gzh.2017.01.02.
9. Palaniandy S., Halomoan R., Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit — The multi-component approach. Minerals Engineering. 2019. Vol. 133. pp. 10–18.
10. Pelevin A. E., Sytykh N. A. Titanomagnetite ore twostage grinding circuit tests. Obogashchenie Rud. 2018. No. 2. pp. 13–18. DOI: 10.17580/or.2020.02.05.
11. Nemykin S. A., Kopanev S. N., Mezentseva E. V., Okunev S. M. Iron concentrate production with the increased content of useful component. Gornyi Zhurnal. 2017. No. 5. pp. 27–31. DOI: 10.17580/gzh.2017.05.05.
12. Vaisberg L. A., Baldaeva T. M., Ivanov K. S., Otroshchenko A. A. Screening efficiency with circular and rectilinear vibrations. Obogashchenie Rud. 2016. No. 1. pp. 3–9. DOI: 10.17580/or.2016.01.01.
13. Mwale A. N., Mainza A. N., Bepswa P. A., Simukanga S., Masinja J. Мodel for fine wet screening. XXVIII IMPC Proceedings. Quebec, Canada, 2016. Paper ID: 568.
14. Markauskas D., Kruggel-Emden H. Coupled DEMSPH simulations of wet continuous screening. Advanced Powder Technology. 2019. Vol. 30, Iss. 12. pp. 2997–3009.
15. Korovnikov A. N., Buzunova T. A. Ore slurry classification on a vibrating screen. Obogashchenie Rud. 2018. No. 5. pp. 17–21. DOI: 10.17580/or.2018.05.03.
16. Opalev A. S., Birukov V. V., Scherbakov A. V. Stadial obtaining of the magnetite concentrate during the development of power resource-saving technology of benefication of ferruginous quartzites on JSC «Olcon». Gorny Informatsionno-analiticheskiy Byulleten'. 2015. No. 11. pp. 60–62.
17. Khokhulya M. S., Opalev A. S., Rukhlenko E. D., Fomin A. V. Production of magnetite-hematite concentrate from ferruginous quartzites and warehoused tailings based on mineralogy and technology studies. Gorny Informatsionnoanaliticheskiy Byulleten'. 2017. No. 4. pp. 259–271.

Language of full-text russian
Full content Buy
Back