Journals →  Цветные металлы →  2021 →  #3 →  Back

Материаловедение
ArticleName Производство ультрамелкозернистого градиентного твердого сплава из порошков, полученных диспергированием отходов сплавов ВК15 в воде и ВК8 в масле
DOI 10.17580/tsm.2021.03.09
ArticleAuthor Дворник М. И., Михайленко Е. А.
ArticleAuthorData

Институт материаловедения Хабаровского научного центра Дальневосточного отделения РАН, Хабаровск, Россия.

М. И. Дворник, старший научный сотрудник, канд. техн. наук, эл. почта: Maxxxx80@mail.ru
Е. А. Михайленко, научный сотрудник, канд. физ.-мат. наук, эл почта: Mea80@list.ru

Abstract

Для получения инструментального материала, обладающего высокой твердостью поверхности и трещиностойкостью основы при невысоких затратах, был проведен эксперимент по спеканию с избытком и недостатком углерода двухслойного градиентного сплава из порошков, полученных электроэрозионным диспергированием сплавов ВК8 и ВК15. Для получения исходного порошка отходы сплава ВК8 в виде пластин с исходным содержанием углерода 5,6 % диспергировали в масле, что привело к появлению избытка углерода в нем (3,1 %), который затем был частично снижен до 0,6 % путем термической обработки в атмосфере CO2. Сплав ВК15 с исходным содержанием углерода 5,3 % диспергировали в воде для формирования недостатка концентрации углерода (2,8 %) в нем, который затем был частично снижен путем термической обработки в атмосфере CO до 0,7 %. Установлено, что диспергированный порошок состоит из сферических микрочастиц и агломерированных наночастиц, полученных кристаллизацией жидкой и паровой фаз. В результате перемешивания вольфрамовой и кобальтовой фаз произошло многократное уменьшение диаметров зерен WC во вновь спеченном сплаве. Сочетание соответствующих отклонений в содержании углерода в слоях спекаемого сплава позволило предотвратить выравнивание концентрации кобальта (8 и 15 %) и тем самым обеспечить повышенную твердость поверхности (1820 HV) и трещиностойкость основы (14,2 МПам). Были оценены затраты энергии и эффективность лабораторной установки при электроэрозионном диспергировании твердых сплавов.

keywords Градиентный ультрамелкозернистый твердый сплав, электроэрозионное диспергирование, твердость, трещиностойкость разрушения, карбид вольфрама
References

1. Panov V. S., Chuvilin A. M. The technology and properties of sintered hard alloys and products made of them. Moscow : MISIS, 2001. 452 p.

2. Fang Z. Z., Wang X., Ryu T., Hwang K. S., Sohn H. Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review. International Journal of Refractory Metals & Hard Materials. 2009. Vol. 27. pp. 288–299.
3. Panov V. S., Zaytsev A. A. Ultradispersed and nanosized hard WC – Co alloys: Technology trends. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2014. No. 3. pp. 38–48.
4. Hiroyuki Sai to, Akira Iwabuchi, Tomoharu Shimizu. Effects of Co content and WC grain size on wear of WC cemented carbide. Wear. 2006. Vol. 261, Iss. 2. pp. 126–132.
5. Jia K., F isch er T. E. Sliding wear of conventional and nanostructured cemented carbides. Wear. 1997. Vol. 203–204. pp. 310–318.
6. Krakhmalev P. V., Adeva Rodil T., Bergstrom J. Influence of microstructure on the abrasive edge wear of WC – Co hardmetals. Wear. 2007. Vol. 263, Iss. 1-6. pp. 240–245.
7. Allen C., Sheen M., Williams J., Pugsley V. A. The wear of ultrane WC – Co hard metals. Wear. 2001. Vol. 250, Iss. 1-2. pp. 604–610.
8. Dvornik M. I., Zaytsev A . V. Dry friction wear resistance of the submicron hard alloy WC – 8 Co – 1 Cr3C2 and conventional hard alloys: A comparative analysis. Perspektivnye materialy. 2015. No. 5. pp. 34–41.
9. Egashira Y. K., Hosono S., Ta kemoto S. Fabrication and cutting performance of cemented tungsten carbide microcutting tools. Precision Engineering. 2011. Vol. 35. pp. 547–553.
10. Roebuck B. Extrapolating hardn ess-structure property maps in WC/Co hardmetals. International Journal of Refractory Metals & Hard Materials. 2006. Vol. 24. pp. 101–108.
11. Gille G., Szesny B., Dreyer K., Berg H. van Den, Schmidt J., Gestrich T. et al. Submicron and ultrane grained hardmetals for microdrills and metal cutting inserts. International Journal of Refractory Metals & Hard Materials. 2002. Vol. 20, Iss. 1. pp. 3–22.
12. Andreas Bock, Burghard Zeiler. Pr oduction and characterization of ultrane WC powders. International Journal of Refractory Metals & Hard Materials. 2002. Vol. 20. pp. 23–30.
13. Dvornik M. I., Mikhaylenko E. A. Th e ultrafine-grained hard alloy WC – 8 Co – 0,4 VC – 0,4 Cr3C2 produced by liquid phase sintering and a comparative analysis of its characteristics. Materialovedenie. 2017. No. 9. pp. 7–12.
14. Fu L., Cao L. H., Fan Y. S. Two-step synthesi s of nanostructured tungsten carbide-cobalt powders. Scripta Materialia. 2001. Vol. 44. pp. 1061–1068.
15. Gusev A. I., Kurlov A. S. Production of n anocr ystalline powders by high-energy ball milling: model and experiment. Nanotechnology. 2008. Vol. 19. 265302.
16. Shabgard M. R., Kabirinia F. Effect of Dielect ric Liquid on Characteristics of WC – Co Powder Synthesized Using EDM Process. Materials and Manufacturing Processes. 2014. Vol. 29, Iss. 10. pp. 1269–1276.
17. Dvornik M. I., Verkhoturov A. D., Ershova T. B., Palazhchenko V. I. Effect of the spark power and duration on the composition of powder produced by electrospark dispersion of hard VK8 alloy in water. Elektronnaya obrabotka materialov. 2005. No. 2. pp. 15–19.
18. Ageev E. V., Semenikhin B. A., Ageeva E. V., Lat ypov R. A. Understanding the chemical composition of powders produced by electrospark dispersion of hard alloys. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2011. No. 5-1. pp. 38–144.
19. Ershova T. B., Dvornik M. I., Zaytsev A. V., Verkh oturov A. D. Ultradispersed and nanostructured tungsten-cobalt powders produced by dispersion techniques and their characterization. Scholarly Notes of Komsomolsk-na-Amure State Technical University. 2015. Vol. 1, No. 2. pp. 66–73.
20. Dvornik M. I., Verkhoturov A. D. Recycling of hard tungsten-cobalt alloy by electrospark dispersion in water followed by carbidization. Poroshkovaya metallurgiya. 2008. No. 7-8. pp. 137–145.
21. Dvornik M. I. Nanostructured WC – Co particles produc ed by carbonization of spark eroded powder: Synthesis and characterization. International Journal of Refractory Metals & Hard Materials. 2010. Vol. 28. pp. 523–528.
22. Putintseva M. N. The chemical and phase composition of p owders produced by electrospark dispersion of WC – Co alloys. Metallovedenie i termicheskaya obrabotka metallov. 2004. No. 4. pp. 20–24.
23. Putintseva M. N., Ievlev V. P. Effect of the WC-Co alloy dis persion conditions on the grain size distribution of powder and its surface morphology. STIN. 2004. No. 3. pp. 17–19.
24. Putintseva M. N. Hard alloy dispersion media. Fizika i khimiy a obrabotki materialov. 2006. No. 2. pp. 78–83.
25. Dvornik M. I., Verkhoturov A. D., Ershova L. P., Metlitskaya V . N., Bruy V. N. Nanostructured tungsten-cobalt powder produced by electrospark dispersion of hard VK8 alloy. Perspektivnye materialy. 2006. No. 3. pp. 70–75.
26. Dvornik M. I., Verkhoturov A. D. Spark erosion processing of hard tungsten-cobalt alloy in water and subsequent carbonization. Powder Metallurgy and Metal Ceramics. 2008. Vol. 47, Iss. 7-8. pp. 486–492.
27. Mohammadreza F. K., Nooshin Sh., Nooshin S. T., Tabrizi S. Study on effect of dielectric gas type on electrical discharge erosion synthesis of tungsten carbide nanopowder. Applied Physics A. 2019. Vol. 125, Iss. 9. No. 610.
28. Namitokov K. K. The phase composition and structure of spark erosion products. The physical basis of spark erosion processing. Ed. by B. A. Krasyuk. Moscow : Nauka, 1966. pp. 74–85.
29. Zolotykh B. N., Kruglov A. I. Thermal processes developing on elec trode surface during spark erosion processing of metals. The problems of spark erosion processing. Moscow : Izdatelstvo AN SSSR, 1960. pp. 65–85.
30. Zolotykh B. N., Melder R. R. The physical basis of spark erosion pr ocessing. Moscow : Mashinostroenie, 1977. 42 p.
31. Fominskiy L. P., Myuller A. S., Levchuk M. V., Tarabrina V. P. Recycling of tungsten scrap into powders by electrospark dispersion. Poroshkovaya metallurgiya. 1985. No. 11. pp. 17–22.
32. Fominskiy L. P., Levchuk M. V., Myuller A. S., Popov A. V., Chebotnikov V. N. The structure of powder produced by electrospark dispersion of tungsten in hydrocarbon liquids. Elektronnaya obrabotka materialov. 1985. No. 3. pp. 22–24.
33. Marusina V. I., Iskhakova G. A., Filimonenko V. N., Sindeev V. I. The structure and phase composition of WC – Co alloy produced by electrospark dispersion. Poroshkovaya metallurgiya. 1991. No. 5. pp. 75–79.
34. Iskhakova G. A., Marusina V. I., Rakhimyanov Kh. M. Determining the micro hardness of spark discharge particles of tungsten carbide. Poroshkovaya metallurgiya. 1987. No. 10. pp. 87–89.
35. Filimonenko V. N., Marusina V. I. Spark discharge production of tungsten carbides. Elektronnaya obrabotka materialov. 1980. No. 4. pp. 47–49.
36. Falkovskiy V. A., Borovskiy G. V., Klyachko L. I., Molodyk S. U., Belyaev S. K. The review: hard alloys with gradient structure. Theory and practice. Tsvetnye Metally. 2012. No. 8. pp. 96–102.
37. Eso O. O., Fan P., Fang Z. Z. A kinetic model for cobalt gradient formation during liquid phase sintering of functionally graded WC – Co. International Journal of Refractory Metals & Hard Materials. 2008. Vol. 26. pp. 91–97.
38. Eso O., Fang Z., Griffo A. Liquid phase sintering of functionally graded WC – C o composites. International Journal of Refractory Metals & Hard Materials. 2005. Vol. 23, Iss. 4-6. pp. 233–241.
39. Lisovskiy A. F. Formation of gradient structure in sintered hard alloys (A review). Sverkhtverdye materialy. 2010. No. 4. pp. 36–53.
40. Fan P., Fang Z. Z., Guo J. A review of liquid phase migration and methods for fabric ation of functionally graded cemented tungsten carbide. International Journal of Refractory Metals & Hard Materials. 2013. Vol. 36. pp. 2–9.
41. Konyashin I., Ries B., Lachmann F., Fry A. T. A novel sintering technique for fabrica tion of functionally gradient WC – Co cemented carbides. Journal of Materials Science. 2012. Vol. 20. pp. 7072–7084.
42. Shatov A. V., Ponomarev S. S., Firstov S. A. Fracture and Strength of Hardmetals at Room Temperature. Comprehensive Hard Materials. 2004. No. 1. pp. 301–343.
43. Dvornik M. I., Zaitsev A. V. Variation in strength, hardness , and fracture toughness in tra nsition from medium-grained to ultrafine hard alloy. Russian Journal of Non-Ferrous Metals. 2018. Vol. 59, No. 5. pp. 563–569.
44. Hwan-Cheol Kim, Dong-Young Oh, In-Jin Shon. Sintering of nanophase WC – 15 % (vol.) Co hard metals by rapid sintering process. International Journal of Refractory Metals & Hard Materials. 2004. Vol. 22, Iss. 4-5. pp. 197–203.
45. Huang S. G., Li L., Vanmeensel K., Van der Biest O., Vleugels J. VC, Cr3C2 and NbC doped WC – Co cemented carbides prepared by pulsed electric current sintering. International Journal of Refractory Metals & Hard Materials. 2007. Vol. 25. pp. 417–422.
46. Dvornik M. I., Mikhaylenko E. A. Control of carbon content in ultrafine cemented carbide by heat tr eatment in reducing atmospheres containing carbon oxides. Journal of Materials Engineering and Performance. 2018. Vol. 27, Iss. 7. pp. 3610–3618.
47. Shen T.-T., Xiao D.-H., Ou X.-Q., Song M., Li X.-X. et al. Preparation of ultrafine WC – 10 Co compo site powders by reduction and carbonization. Journal of Central South University. 2013. Vol. 20, Iss. 8. pp. 2090–2095.
48. L. P. Fominskiy. A method for producing powders and pastes. Certificate of authorship USSR, No. 1107965 . Applied: 25.04.1983. Published: 15.08.1984. Bulletin No. 30.
49. L. P. Fominskiy, E. V. Gorozhankin. A method for producing metallic powders. Certificate of authorship USSR, No. 833377. Applied: 30.10.1979. Published: 30.05.1981. Bulletin No. 20.

Language of full-text russian
Full content Buy
Back